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Abstract

This note describes a de�ciency of traditional proofs of consistency of resampling techniques

for statistical inference and provides a simple solution based on conformal prediction.

1 De�ciency of Classical Consistency Guarantees

Suppose we are interested in inference for a �parameter� or �functional� θ0 P Rp based on an estimatorpθ P Rp computed using data Z1, Z2, . . . , Zn. Assume that the estimator pθ satis�es the asymptotic

linear representation property, i.e.,

?
nppθ � θ0q � 1?

n

ņ

i�1

ψpZiq � rn, such that }rn} � opp1q,

for some norm } � }. The bootstrap and subsampling procedures for inference proceed as follows. For

1 ¤ b ¤ B, compute bootstrapped estimators pθpbq which means generating a bootstrap resample of

the data and applying the algorithm that outputs pθ to the resampled data. A bootstrap con�dence

region pRn for θ0 satis�es

1

B

B̧

b�1

1t?nppθpbq � pθq P pRnu ¥ 1� α. (1)

One might, in practice, bootstrap a normalized statistic such as n1{2diagppΣnq�1{2ppθ � θ0q. The

discussion below holds readily for such a normalized bootstrap too. Traditionally consistency results

for bootstrap prove

sup
APA

���P�?nppθp�q � pθq P A��tZiu	� P
�?

nppθ � θ0q P A
	��� � opp1q as nÑ8, (2)

for a class of sets A; here pθp�q denotes a generic bootstrap estimator. For clarity, note that this is

equivalent to

sup
APA

����»
A
dP �pδq �

»
A
dP pδq

���� � oP p1q,
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where P �p�q represents the probability measure of n1{2ppθp�q � pθq conditional on tZiu and P p�q rep-
resents the probability measure of n1{2ppθ � θ0q, that is, for any Borel set B � Rp,

P �pBq :� P
�?

nppθp�q � pθq P B�� tZiuni�1

	
and PpBq :� P

�?
nppθ � θ0q P B

	
.

It is clear that there is a gap between (1) and (2), because one cannot use just (2) to prove any

validity guaranetee for pRn obtained from (1). One simple reason for this is that (2) does not involve

B while (1) does.

In order to clear this gap, one needs to prove that conditional on the data tZiu,

sup
APA

����� 1

B

B̧

b�1

1t?nppθpbq � pθq P Au � »
A
dP �pδq

����� � op�p1q, as B Ñ8. (3)

(Ideally B grows with the sample size n.) The randomness op� on the right hand side is through

the randomness of the bootstrap samples conditional on tZiu. Combining (2) and (3), (asymptotic)

validity guarantee for the con�dence set pRn in (1) follows:»
pRn

dP pδq ¥
»
pRn

dP �pδq � opp1q pfrom (2)q

¥ 1

B

B̧

b�1

1t?nppθpbq � pθq P pRnu � op�p1q � opp1q pfrom (3)q

¥ 1� α� op�p1q � opp1q.

Because
?
nppθpbq�pθq, 1 ¤ b ¤ B are independent and identically distributed conditional on tZiu,

proving (3) usually can be done through the results in empirical processes. If the VC dimension

VCpAq of the class A of sets is �nite, then Theorem 2 of Vapnik and Chervonenkis (1971) proves

that

P

�
sup
APA

����� 1

B

B̧

b�1

1t?nppθpbq � pθq P Au � »
A
dP �pδq

����� ¥
c

16VCpAq logp3Bq
B

���� tZiu
�
¤ 1

2B � 1
, (4)

by taking ε �
a

8 logpp2B � 1qVCpAqq{B in Theorem 2 of Vapnik and Chervonenkis (1971) and

applying Theorem 9.3 of Györ� et al. (2006); also see the proof of Theorem 9.6 of Györ� et al.

(2006) for a similar result. Inequality (4) implies (3) if VCpAq � opB{ logpBqq. The rate here

cannot be improved, in general. For example, the VC dimension of the set of all rectangles in Rp
with facets parallel to the coordinate axes is of order p (Györ� et al., 2006, Problem 9.2) and hence

we need at least p bootstrap samples. This can be prohibitive in high-dimensional examples where

p is much larger than the sample size n.

A Motivating Example. We now provide a relatively more concrete motivating example that

emphasizes the need for resolving the gap mentioned above. In the high-dimensional case where

p is allowed to grow much faster than n (e.g., p � exppopnγqq for some γ P r0, 1s), Chernozhukov
et al. (2017) prove central limit theorem and bootstrap consistency results for the set of all hyper-

rectangles. In this case the target of estimation can be thought as the population mean. The results
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of Chernozhukov et al. (2017) imply, under certain conditions, that mean zero independent random

vectors Z1, . . . , Zn P Rp satisfy

sup
APAre

�����P
�

1?
n

ņ

i�1

Zi P A
�
� P pG P Aq

����� ¤ C

�
log7 p

n


1{6

,

sup
APAre

�����P
�

1?
n

ņ

i�1

Z�
i P A

����tZiu
�
� PpG P Aq

����� � Opp1q
�

log5 p

n


1{6

.

(5)

Here Are represents the set of all hyper-rectangles in Rp and G P Rp represents a mean zero Gaussian

random vector whose covariance matches that of n�1{2
°n
i�1 Zi. These results have been improved

in Chernozhukov et al. (2019) but the main message of all these results is that log p � opnγq for
some γ P r0, 1s is enough for central limit theorem and bootstrap consistency to hold. The fact that

VCpAreq � 2d implies from (4) that the number of bootstrap samples still has to satisfy p � opBq
as B Ñ8. Can we avoid requiring more bootstrap samples than the original sample size n?

2 A Solution based on Conformal Prediction

The discussion above shows that constructing a set pR as in (1) may not in general have a validity

guarantee unless B is very large, especially in high-dimensional settings. We now provide a solution

to this problem which does not require proving (3). Instead, we directly aim to construct a set pR�

such that conditional on tZiu,»
pR�

dP �pδq � P
�?

nppθ� � pθq P pR�
��tZiu	 ¥ 1� α, (6)

where pθ� is a generic bootstrap estimator.

We now provide a computationally feasible to guarantee (6) irrespective of the dimension of the

estimator pθ, based on conformal prediction. Conformal prediction (Balasubramanian et al., 2014) is

a general technique that provides a prediction set for a future observation. SupposeW1,W2, . . . ,Wm

are exchangeable, then conformal prediction techniques can be used to construct a set pS such that

PpWm�1 P pSq ¥ 1� α, (7)

whatever m ¥ 1 and α P r0, 1s maybe. This guarantee holds whenever Wm�1 is exchangeable with

W1, . . . ,Wm. The probability in (7) is computed with respect to the randomness of Wm�1 and of

pW1, . . . ,Wmq. In particular, if W1, . . . ,Wm�1 are independent and identically distributed, then (7)

is equivalent to

E
�»

pS
dPW pδq

�
¥ 1� α,

where the expectation is with respect to pW1, . . . ,Wmq and PW p�q is a probability measure ofWm�1.

In case of bootstrap, conditional on tZiu, T1 � ?
nppθp1q � pθq, . . . , TB � ?

nppθpBq � pθq are

independent and identically distributed. Applying the conformal prediction technique, one can

obtain a set pR: such that

E
�»

pR:

dP �pδq
����tZiu� � P

�?
nppθpB�1q � pθq P pR:

��tZiu	 ¥ 1� α. (8)

3



The expectation in the �rst term here is with respect to the probability measure of pT1, . . . , TBq
conditional on tZiu. This does not readily imply that pR: satis�es (6). We now use the guarantee (8)

to construct a set pR� satisfying (8). The basic idea is summarized in Equation (9).

Bootstrap run 1 : T
p1q
1 T

p1q
2 � � � T

p1q
B ñ pR:

1,Bpα1q
Bootstrap run 2 : T

p2q
1 T

p2q
2 � � � T

p2q
B ñ pR:

2,Bpα1q
...

...
... � � � ...

Bootstrap run B1 : T
pB1q
1 T

pB1q
2 � � � T

pB1q
B ñ pR:

B1,Bpα1q

,////.////-
pR� :�

B1¤
b1�1

pR:
b1,Bpα1q. (9)

In words, we generateB1 many bootstrap datasets and obtain pR:
b1,Bpα1q, 1 ¤ b1 ¤ B1 satisfying (8)

with α1 (instead of α); the value of α1 will be de�ned later. The �nal set pR� is the union of pR:
b1,Bpα1q.

Theorem 1. Fix α, δ P r0, 1s. Let α1 P r0, 1s, B1 ¥ 1 be any two numbers satisfying

α1 �
c

2α1 logp1{δq
B1

� logp1{δq
B1

¤ α. (10)

If Er³
pR:

b1,B
pα1q

dP �pδq��tZius ¥ 1� α1 for all 1 ¤ b1 ¤ B, then pR� de�ned in (9) satis�es

P
�»

pR�

dP �pδq ¥ 1� α

����tZiu
 ¥ 1� δ.

Proof. See Appendix A for a proof.

The validity guarantee of Theorem 1 is �nite sample. It does not require B or B1 to diverge to

in�nity with the sample size; further it does not restrict the growth of the dimension p.
Inequality (10) is based on Bernstein's inequality and can be improved by using more re�ned

concentration inequalities such as Bennett's (Theorem 3.1.7 of Giné and Nickl (2016)) or Benktus'

(Theorem 1 of Bentkus (2002)). For practical implementation, we recommend the use of Bentkus'

inequality because it is sharper than Bennett's concentration inequality.

The set pR� in (9) can be replaced by a smaller set as follows. Fix K ¥ 0 and de�ne the setpR;pKq by

1tx P pR;u ¥ 1

B1

B1¸
b1�1

1tx P pR:
b1,Bpα1qu �

K logp1{δq
B1

for all x P Rp. (11)

It is clear that pR;pKq � pR� for any K ¡ 0. The union set pR� is the smallest set satisfying (11) and

the set pR; reduces the set pR� by only considering elements that belong to at least B1�K logp1{δq of
the pR:

b1,Bpα1q sets. For this re�ned set pR;pKq, Theorem 1 does not hold readily. To restore validity,

we use α1 P r0, 1s, B1 ¥ 1 such that

α1 �
c

2α1 logp1{δq
B1

� pK � 1q logp1{δq
B1

¤ α. (12)

For such a choice of α1 P r0, 1s to exist, it is necessary that B1 ¡ pK � 1q logp1{δq{α. We suggest

using a small K so that pR;pKq ignores such points in pR� that only belong to one or two of the setspR:
b1,Bpα1q.
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If pR� P A, then Theorem 1 combined with the (traditional) bootstrap consistency result (2)

yields coverage validity for pR�. The assumption pR� P A is crucial to applying (2), especially in

high-dimensions where the �complexity� of A drastically impacts the rate of convergence in (2).

Even if we construct the conformal prediction set pR:
b1,Bpα1q in such a way that they belong to A,

their union pR� may not belong to A; for example, take A to be the set of all hyper-rectangles. A

natural example in high-dimensions where pR� P A holds is A � ttx P Rp : }x}8 ¤ tu : t ¥ 0u, the
set of all hyper-cubes; the maximum norm here can be replaced by any other semi-norm. In many

cases, one can �nd an element of A that contains pR�; for example, this is the case when A is the

set of all hyper-rectangles.

3 A Concrete Application of Conformal Prediction

In this section, we provide a concrete application of the theory in previous section by constructing a

speci�c conformal prediction region. Consider the problem of constructing a simultaneous con�dence

regions for a mean vector µ :� pµ1, µ2, . . . , µpqJ P Rp. We have realizations of independent random

vectors X1, X2, . . . , Xn P Rp with mean µ P Rp. There are many ways to construct simultaneous

con�dence regions:

Maximum Statistics. One can provide a single threshold for all coordinates of µ by bootstrap-

ping the �max�-statistic:

max
1¤j¤p

n1{2| sXj � µj |
σj

,

where sXj represents the j-th coordinate of sX � n�1
°n
i�1Xi P Rp and σ2j � Varpn1{2p sXj � µjqq.

This provides a con�dence region of the form#
θ P Rp :

n1{2| sXj � µj |
σj

¤ tα for all 1 ¤ j ¤ p

+
.

Because the sets are hyper-cubes, the VC dimension of these sets is order 1 irrespective of what

p is. Hence the empirical bootstrap distribution converges to the true bootstrap distribution, that

is, (6) holds true, irrespective of what p is.

Pre-pivoted Statistics. The single threshold provides equal importance to all coordinates of

µ P Rp and in some cases, there might be an importance ordering of µj 's. Suppose we want a

smaller con�dence interval for µj than the con�dence interval for µj�1 for all j ¥ 1. In this case,

we can consider con�dence regions of the type#
θ P Rp :

n1{2| sXj � µj |
σj

¤ tαpjq for all 1 ¤ j ¤ p

+
, (13)

for some constants tαpjq such that tαp1q ¤ tαp2q ¤ � � � ¤ tαppq. A systematic way to obtain such

increasing thresholds is by bootstrapping

max
1¤j¤p

sHj

�
Hj

�
n1{2| sXj � µj |

σj

��
, (14)
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where Hjp�q is the cumulative distribution function (CDF) of n1{2| sXj�µj |{σj and sHjp�q is the CDF
of max1¤k¤j Hkpn1{2| sXk�µk|{σkq. The quantile of (14) leads to con�dence regions of the form (13)

with increasing thresholds. The increasing thresholds follow from the fact that sHjp�q are increasing
in 1 ¤ j ¤ p. The idea of considering the statistic (14) with Hjp�q and sHjp�q is motivated by the

idea of pre-pivoting from Beran (1987, 1988a,b).

In order to implement this idea with conformal prediction, we proceed as follows. For any

bootstrap data X
pbq
1 , X

pbq
2 , . . . , X

pbq
n generated i.i.d. from the empirical distribution of X1, . . . , Xn,

construct the bootstrap statistic

Tb :� n1{2pdiagppΣqq�1{2
� sXpbq � sX	 ,

where sXpbq � n�1
°n
i�1X

pbq
i P Rp and pΣ is the sample covariance matrix based on X1, . . . , Xn, that

is, pΣjj � pn� 1q�1
°n
i�1pXi,j � sXjq2. For bootstrap run 1, we have the �data� T

p1q
b , 1 ¤ b ¤ B. To

construct pR:
1,Bpα1q based on conformal prediction as follows:

1. Split the �data� T
p1q
b , 1 ¤ b ¤ B into two parts

I1 :� tT p1qb : 1 ¤ b ¤ tB{2uu and I2 :� tT p1qb : tB{2u� 1 ¤ b ¤ Bu.

2. Based on I1, construct estimators pHp1q
j p�q,x�Hp1q

j p�q of Hjp�q, sHjp�q:

pHp1q
j prq � 1

tB{2u
tB{2u¸
b�1

1

!
|T p1qb,j | ¤ r

)
, x�Hp1q

j prq � 1

tB{2u

tB{2u¸
b�1

1

"
max
1¤k¤j

pHkp|T p1qb,k |q ¤ r

*
.

3. Apply conformal prediction to construct pR:
1,Bpα1q as follows. Find the p1 � 2{Bqp1 � α1q-th

quantile ptp1qα1 of

max
1¤j¤p

x�Hp1q
j

� pHp1q
j

�
T
p1q
b,j

		
, tB{2u� 1 ¤ b ¤ B. (15)

The conformal prediction region is given by

pR:
1,Bpα1q :�

!
δ P Rp : |δj | ¤ t

p1q
j,α1

)
, where t

p1q
j,α1 :� px�Hp1q

j q�1
�
p pHp1q

j q�1pptp1qα1 q	 .
The procedure above is the split conformal method from Papadopoulos et al. (2002) and Lei et al.

(2013); others versions of conformal prediction methods such as jackknife+ and CV+ from Barber

et al. (2019) can also be used. As is well-known in the conformal literature, if we de�ne ptp1qα1 as the

quantile of randomized statistics in (15) randomized by adding Ub � Up0, 10�8q, then conformal

prediction set pR:
1,Bpα1q satis�es

1� α1 ¤ E

�»
pR:
1,Bpα

1q
dP �pδq

�
¤ 1� α1 � 2

2�B
.

If we consider the set pR� :�
"
δ P Rp : |δj | ¤ max

1¤b1¤B1
t
pb1q
j,α1

*
, (16)
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then, for α1, B1 satisfying (10), we obtain

P
�»

pR�

dP �pδq ¥ 1� α



¥ 1� δ. (17)

If the maximum in (16) is replaced by the pB1�K logp1{δqq-th quantile, then for α1, B1 satisfying (12)

yields (17). Because inequalities (5) prove that the traditional bootstrap consistency (2) holds, we

get a formal validity guarantee for pR�. The �nal p1� αq simultaneous con�dence region for µ P Rp
would be xCIn :�

!
θ P Rp : n1{2pdiagppΣqq�1{2p sXn � θq P pR�

)
.
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APPENDIX

A Proof of Theorem 1

Because the bootstrap samples are independent conditional on tZiu, the random variables»
pR:
1,Bpα

1q
dP �pδq,

»
pR:
2,Bpα

1q
dP �pδq, . . . ,

»
pR:

B1,B
pαq

dP �pδq P r0, 1s,

Setting

qα1 :� E

�»
pR:

b1,B
pα1q

dP �pδq
����tZiu

�
,

Theorem 1 of Bhatia and Davis (2000) yields

Varp
»
pR:

b1,B
pα1q

dP �pδq��tZiuq ¤ qα1p1� qα1q ¤ α1p1� α1q,

whenever α1   1{2. Hence, Bernstein's inequality (Theorem 3.1.7 of Giné and Nickl (2016)) implies

that for all u ¥ 0,

P

������ 1

B1

B1¸
b1�1

»
pR:

b1,B
pα1q

dP �pδq � qα1

����� ¥
c

2α1p1� α1qu
B1

� u

3B1

����tZiu
�
¤ 2e�u.

Bernstein's inequality here can be replaced by a more re�ned concentration inequality such as

Theorem 1 of Bentkus (2002); see Bentkus et al. (2006, Section 9) for computation. Taking u �
logp1{δq yields, with conditional (on tZiu) probability of at least 1� 2δ,����� 1

B1

B1¸
b1�1

»
pR:

b1,B
pα1q

dP �pδq � qα1

����� ¤
c

2α1p1� α1q logp1{δq
B1

� logp1{δq
3B1

.

From the de�nition of pR� in (9), it follows that»
pR�

dP �pδq ¥ max
1¤b1¤B1

»
pR:

b1,B
pα1q

dP �pδq ¥ 1

B1

B1¸
b1�1

»
pR:

b1,B
pα1q

dP �pδq

¥ qα1 �
c

2α1p1� α1q logp1{δq
B1

� logp1{δq
3B1

,

with the conditional (on tZiu) probability of at least 1� δ. Hence if we take α1 such that

1� α1 �
c

2α1 logp1{δq
B1

� logpB1q
1{δ ¥ 1� α,

then we get with a conditional probability of at least 1� δ,»
pR�

dP �pδq ¥ 1� α.
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