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Measures of Association

One of the widely studied problems in statistics is to understand

whether there is any association between a given set of random

variables. And if there is an association (of some kind), how can one

use this information to infer about one variable using the others?

To measure association, Rényi (1959) proposed a set of conditions

that he thought should be satisfied by any measure of association.

His conditions are very restrictive and leads to the measure of

association between random variables X and Y called the maximal

correlation coefficient given by

S = sup
f ,g

Corr(f (X ), g(Y )),

where the supremum is taken over all function f and g such that the

correlation is defined.
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Some Easy Remarks

It is easy to note that the measure S is symmetric in the random

variables and 0 ≤ S ≤ 1.

S = 0 if and only if the variables involved are independent. S = 1 if

and only if there exists a perfect functional relation between the

variables involved.

S is invariant to invertible transformations of variables, in the sense

that, S(X ,Y ) = S(α(X ), β(Y )) for any two invertible

transformations α, β.

S is closely related to the canonical correlation coefficient where one

restricts the functions, over which the supremum is taken, to be

linear.
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The Model

It is well-known that the canonical correlation vectors can be found

by using alternating regressions of u>Y on v>X fixing one of u and

v alternatively.

Define optimal transformations f0 and g0 for X and Y as

(f0, g0) = arg supf ,g Corr(f (X ), g(Y )).

One can find “optimal” transformations f0 and g0 for X and Y

respectively, by using alternating conditional expectations (ACE) or

regressions.

The model in this case can be written as

g0(Y ) = f0(X ) + ε, E [ε|X ] = 0.
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The Additive Model

In case X is a random vector, one can still use the model

g0(Y ) = f0(X ) + ε. But this model is not very much useful because

of the well-known curse of dimensionality.

Instead once can use the model

g0(Y ) =

p∑
i=1

fi0(Xi ) + ε, E [ε|X ] = 0.

It is easy to find the optimal transformations by minimizing

E

[
g(Y )−

p∑
i=1

fi (Xi )

]2

,

over all functions g , f1, . . . , fp subject to the constraint

Var(g(Y )) = 1.

This model is known as the additive model or the alternating

conditional expectation (ACE) model.
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ACE Algorithm

Start with any mean zero transformation of random variables and

variance one transformation for Y . A simple choice is to use

β(0)(Y ) = Y−E [Y ]√
Var(Y )

, α
(0)
1 (X1) = . . . = α

(0)
p (Xp) = 0.

for k = 1 to k = p use,

E

[
β(j−1)(Y )−

∑
i<k

α
(j)
i (Xi )−

∑
i>k

α
(j−1)
i (Xi ))

∣∣∣∣Xk

]
= α

(j)
k (Xk),

to find α
(j)
k (Xk).

Now use the obtained functions α
(j)
i to find new β(Y ), using,

E

[
p∑

i=1

α
(j)
i (Xi )|Y

]/
SD

(
E

[
p∑

i=1

α
(j)
i (Xi )|Y

])
= β(j)(Y )

.

Use steps 2 and 3 until convergence.
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Remarks

In case of finite samples, use estimates of conditional expectations

instead of the conditional expectations in the algorithm.

The algorithm works even when some of the covariates X1,X2,. . .,Xp

are discrete or periodic or of mixed type.

The ACE model can be made semi-parametric by restricting

transformations of a particular variable(s) to a parametric family.

One has to take into consideration the number of parameters (to be

estimated) and the sample size.

Use of linear smoothers, particularly kernel or k-NN type estimators

lead to outlier insensitive estimators. Robustification of estimators

can be attained by using robust regression estimators.
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Simulated Data

Figure 1: Model is Y = log(4 + |X1|+ X 2
2 + sin(2πX3) + X4 + X 3

5 + ε)
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Real Data Go

Figure 2: Eye Lens Weight versus Age of rabbit
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Prediction in ACE model

Prediction of response variable is fairly straight forward in ACE

model although not as easy as in additive models.

From the estimated optimal transformations ĝ and f̂1, . . ., fp of the

random variables Y and X1, . . . ,Xp, we consider the prediction at

the covariate x = (x1, . . . , xp)

ŷ = ĝ−1

(
p∑

i=1

f̂i (xi )

)
.

It is important that the optimal transformation for Y has to be

invertible in order to get a meaningful prediction for Y .

Based on this prediction procedure, we can define a measure of

predictive ability as

Q := 1−
∑n

i=1(yi − ŷi )
2∑n

i=1(yi − ȳ)2
,

where ŷi is obtained by fitting the model on the remaining n − 1

observations. This is the usual PRESS statistic.
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The Hypothesis

As mentioned previously, it is easy to implement ACE with

parametric transformations for some variables.

In this respect, for a better interpretation it might be of interest to

test if the optimal transformation is actually from the parametric

family.

In particular, how do we test that the optimal transformation for a

particular random variable, say X1, is linear? or how do we test if

ACE model coincides with the multiple linear regression model?

Since we do not make any distributional assumptions, our aim is to

use the technique of bootstrap in order to perform the test.
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The Hypothesis Contd.

The hypothesis we want to test can be formally expressed as

H0 : α1(X1) = a1 + b1X1 for some a1, b1,

H1 : α1(X1) is not linear.

This hypothesis can also be written in the form of models as,

H0 : β(Y ) = a1 + b1X1 +

p∑
i=2

αi (Xi ) + ε,

H1 : β(Y ) =

p∑
i=1

αi (Xi ) + ε.

We can use any measure of goodness-of-fit which can discriminate

between the null and the alternative. We propose to use either the

ratio of the residual sum of squares or the ratio of the prediction

sum of squares.
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The First Idea

For any particular test statistic T , let the rejection region be

specified as T > τ , for some τ based on the level of the test α.

Compute the test statistics T and also the unknowns in the model

satisfying the null hypothesis.

Take B sub-samples each of size R with replacement and then

calculate the value of T as calculated in step 1.

Now we have B values from the distribution of T under the null.

For large enough B, we can find the estimate of critical value, τ̂ ,

based on the empirical distribution of T . Calculation of the p-value

can also be done using the empirical distribution, P(T > Tobs.).
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The First Idea Contd.

The two measures which can be used as test statistics for

performing these tests are given by

T1 = SSEH0/SSE , T2 = PSSH0/PSS ,

where SSEH0 =
∑p

j=1(β̂(Yi )−
∑p

i=1 α̂i (Xij))2 for estimated

functions under null and PSSH0 =
∑n

i=1(Yi − ŶiH0 )2.

Note here that when we take sub-samples, they satisfy the

hypothesis that the actual sample satisfies.

Therefore, when the test statistic T is calculated in this way for

each sub-sample, we are estimating the distribution of T under the

true hypothesis which need not be the null

In light of this, the estimate we get from the bootstrap in this way

may not converge to the actual cut-off value.
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The Refined Idea

We follow the approach of Davidson and MacKinnon (2004) and

Martin (2007) to generate the value of the test statistics under the

null irrespectively of the true hypothesis.

Fit the unrestricted full model and find the residuals, e1, . . . , en.

Also fit the null model and find the estimates of parameters of line

and estimates of other functions.

Construct the samples, (y∗1 , x1), (y∗2 , x2), . . . , (y∗n , xn) under null

hypothesis, where y∗i is calculated from the model

β̂(yi ) = â1 + b̂1X1i +
∑p

j=1 α̂j(Xji ) + e∗i for sub-sampled e∗1 , . . . , e
∗
n

obtained from e1, . . . , en using hat functions obtained from null

model.

Find the value of the test statistic T for each of these samples by

fitting the models under null and unrestricted for the newly

constructed observations.
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This method can be used to obtain a consistent test for any two

nested regression models, in particular to test ACE versus multiple

linear regression.

This test can also be used for variable selection or to test parametric

transformations for more than one variable.

Table 1: Tests of linearity: Y = log(4 + |X1|+ X 2
2 + sin(2πX3) + X4 + X 3

5 + ε)

Variable Statistic Est. 5% Cut-Off Est. p-value

Y 2.738687 1.032586 < 0.0001

1 8.688747 1.026901 < 0.0001

2 9.720563 1.027773 < 0.0001

3 37.07122 1.022618 < 0.0001

4 0.986757 1.015667 0.597

5 2.626931 1.022109 < 0.0001

Table 2: Tests of linearity for Rabbit Data back

Variable Statistic Est. 5% Cut-Off Est. p-value

Y 1.114493 1.180262 0.129

1 4.531953 1.276061 < 0.0001
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Remarks

For the refined idea, prediction based on the function estimates plays

a central role and so the performance of the test depends heavily on

the nature of optimal transformation of the response variable under

the null.

The ACE model/algorithm allows for monotone shape-restricted

transformation for any variable which can be used for response

variable in order to get an invertible transformation.

In general, one can use the test described for testing the hypothesis

related to shape restricted inference such as testing the hypothesis

that the optimal transformation for a variable is monotone or convex.
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Another Possible Approach

Using the approach proposed in Zheng (1996), one can develop a

new testing procedure as follows.

Underlying fact useful in this respect is that if the ACE model is the

truth, then E [ui |xi ] = 0 with ui = g0(yi )−
∑p

j=1 f0j(xji ).

Also, observe that, E [uiE [ui |xi ]p(xi )] = E [E 2[ui |xi ]p(xi )] ≥ 0 and

equals zero only under actual model.

Hence we can use a sample analogue of this expectation using the

non-parametric estimate of the conditional expectation as a test

statistic for selecting a model among ACE and the multiple linear

regression.
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Projection Pursuit Model

As mentioned previously, in case of a random vector X , we can try

to find functions (optimal transformations) g and f for Y and X

instead of for each of the variables individually.

In order to avoid the curse of dimensionality, the PPR model only

considers functions of the form

f (X ) =
M∑
i=1

fi (α
>
i X ),

for some integer M, unit vectors αi and functions fi .

Results of Diaconis and Shahshahani (1984) show that almost any

multivariate function can be approximated as closely as needed by

the representation above.

The PPR model (also referred to as multiple index model) formally

can be written as

Y =
M∑
i=1

fi (α
>
i X ) + ε, E [ε|X ] = 0.

This can handle interactions between covariates better than the

ACE.
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Generalized ACE/PPR

Both the ACE and the PPR models can be generalized to the model

which we call GACE.

g(Y ) =
M∑
i=1

fi (α
>
i X ) + ε, E [ε|X ] = 0.

Estimation of the PPR model uses the back-fitting technique. One

can use an algorithm similar to that of the ACE algorithm for

estimation of the GACE model where we replace the step of finding

transformation for each covariate, we use PPR estimation for getting

covariate approximation.

This model generalizes the ACE on the right and the PPR on the

left.
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Testing for More Models

The hierarchy of the models discussed (linear regression → ACE →
PPR → GACE) leads to models which are more and more flexible

and so can give better fits for almost any data set.

The more flexible the model the more is the chance for over-fitting

and more is the loss in simplicity and interpretation.

In order to avoid this problem of over-fitting, we propose to use the

test described above for testing linear regression versus ACE first

and then ACE versus GACE to settle on the lighter model for better

estimation.
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Post-Selection Inference

A word of caution at the end. We are performing tests on finding

which model to use and so we get a random model at the end.

In this respect, the asymptotics or inference regarding the model

thus obtained are a part of post-selection inference.

Recent results of Berk (2013) show that the results for the model

alone may not be directly applicable to the post-selection models.

Certain care has to be practised in interpreting the results of the

tests and the model obtained.
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Thank You!
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