Construction of PoSI Statistics¹

Andreas Buja and Arun Kumar Kuchibhotla

Department of Statistics University of Pennsylvania

September 8, 2018

WHOA-PSI 2018

¹Joint work with "Larry's Group" at Wharton, including Larry Brown, Edward George, Linda Zhao and Junhui Cai.

Andreas & Arun, Larry's Group (UPenn)

Construction of PoSI Statistics

LAWRENCE D. BROWN † 1940 – 2018.

Andreas & Arun, Larry's Group (UPenn)

Construction of PoSI Statistics

- PoSI in High-dimensions under Misspecification
- 3 Three PoSI Confidence Regions
- 4 Numerical Examples

< 47 ▶

- 2 PoSI in High-dimensions under Misspecification
- 3 Three PoSI Confidence Regions
- 4 Numerical Examples

A Crisis in the Sciences: Irreproducibility

- Indicators of a crisis:
 - Bayer Healthcare reviewed 67 in-house attempts at replicating findings in published research: < 1/4 were viewed as replicated
 - Arrowsmith (2011, Nat. Rev. Drug Discovery 10): Increasing failure rate in Phase II drug trials
 - Ioannidis (2005, PLOS Medicine):
 "Why Most Published Research Findings Are False"
 - Simmons, Nelson, Simonsohn (2011, Psychol.Sci): "False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant"

⇒ Irreproducibility of Empirical Findings

- Many potential causes two major ones:
 - Institutional: Publication bias, "file drawer problem"
 - Methodological: Statistical biases, "researcher degrees of freedom"

Irreproducibility: Methodol. Factor 1 – Selection

- A statistical bias is due to lack of accounting for selection of variables, transforms, scales, subsets, weights,
- Regressor/model selection (our focus) is on several levels:
 - formal selection: all subset (*C*_p, AIC, BIC,...), stepwise (F), lasso,...
 - informal selection: diagnostics for GoF, influence, collinearity,...
 - post hoc selection: "Effect size is too small, the variable too costly."
- Suspicions and Criticisms:
 - All three modes of selection are (should be) used.
 - More thorough data analysis \Longrightarrow More spurious results
 - Not a solution: Post-selection inference for "adaptive Lasso", say.
 Empirical researchers do not write contracts with themselves to commit a priori to one formal selection method and nothing else.

The "PoSI" Solution to Selection: FWER Control

- PoSI Procedure general version:
 - Define a universe *M* of models *M* you might ever consider/select: outcomes (*Y*), regressors (*X*), their transforms (*f*(*X*), *g*(*Y*)), ...
 - Define the universe of all tests you might ever perform in these models, typically for regression coeffs β_{j,M} (j'th coeff in model M).
 - Consider the **minimum of the p-values** for all these tests: Obtain its 0.05 quantile $\alpha_{0.05}$ for FWER adjustment.
 - Now freely examine your data and select models $\hat{M} \in \mathcal{M}$, reconsider, re-select, re-reconsider, ... but compare all p-values against $\alpha_{0.05}$, not 0.05, for 0.05 \mathcal{M} -FWER control.
- Cost-Benefit Analysis:
 - Cost: Huge computation upfront adjustment for millions of tests
 - Benefits: Solution to the circularity problem select model *M̂*, don't like it, select *M̂*', don't like it, ... PoSI inference remains valid.

< ロ > < 同 > < 回 > < 回 >

Irreproducibility: Methodol. Factor 2 – Misspecification

- Models are approximations, not generative truths.
 ⇒ Consequences!
- What is the target $\beta_{j,M}$ of $\hat{\beta}_{j,M}$? Stay tuned.
- Model bias interacts with regressor distributions to cause model-trusting SEs to be off, sometimes too small by a factor of 2.

$$V[\hat{\beta}] = E[V[\hat{\beta}|X]] + V[E[\hat{\beta}|X]]$$

- Do not condition on the regressors; do not treat them as fixed!
- Use model-robust standard errors, for example, from the x-y pairs or multiplier bootstraps, not the residual bootstrap!

Wanted: PoSI Protection under Misspecification!

Up next: PoSI under Misspecification and PoSI Statistic

Andreas & Arun, Larry's Group (UPenn)

PoSI in High-dimensions under Misspecification

3 Three PoSI Confidence Regions

4 Numerical Examples

5 Summary

A (10) > A (10) > A (10)

For models $M \subseteq \{1, 2, ..., p\}$ and IID random vectors (X_i, Y_i) . For any function f, set

$$\widehat{\mathbb{P}}_n[f(X,Y)] = \frac{1}{n} \sum_{i=1}^n f(X_i,Y_i),$$

Sample

• Gram matrix:

$$\hat{\Sigma}_n := \hat{\mathbb{P}}_n \left[X X^\top \right].$$

"Covariance" Vector:

$$\widehat{\Gamma}_n := \widehat{\mathbb{P}}_n [XY].$$

Estimator:

$$\hat{\beta}_{n,M} := (\hat{\Sigma}_n(M))^{-1}\hat{\Gamma}_n(M).$$

and
$$\mathbb{P}[f(X, Y)] = \mathbb{E}[f(X_1, Y_1)].$$

Population

• Gram matrix:

$$\Sigma := \mathbb{P}\left[XX^{ op}
ight]$$

"Covariance" Vector:

$$\Gamma := \mathbb{P}[XY].$$

Target:

$$\beta_M := (\mathbf{\Sigma}(M))^{-1} \, \mathbf{\Gamma}(M).$$

Uniform-in-submodel Result for OLS

If $Z_i := (X_i, Y_i)$ are *sub-Gaussian*, then the results of Kuchibhotla et al. (2018b) imply that for any $1 \le k \le p$,

$$\max_{M|\leq k} \left\| \hat{\beta}_{n,M} - \beta_M \right\|_2 = O_p\left(\sqrt{\frac{k\log(ep/k)}{n}}\right),$$

and

$$\max_{|M| \le k} \left\| \sqrt{n} \left(\hat{\beta}_{n,M} - \beta_M \right) - \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_M(Z_i) \right\|_2 = O_p \left(\frac{k \log(ep/k)}{\sqrt{n}} \right),$$

where

$$\psi_{\boldsymbol{M}}(\boldsymbol{Z}_i) := (\boldsymbol{\Sigma}(\boldsymbol{M}))^{-1} \boldsymbol{X}_i(\boldsymbol{M}) (\boldsymbol{Y}_i - \boldsymbol{X}_i^{\top}(\boldsymbol{M}) \boldsymbol{\beta}_{\boldsymbol{M}}).$$

Recall

$$\Sigma(M) = \mathbb{E}[X_1(M)X_1^{\top}(M)]$$
 and $\beta_M := (\Sigma(M))^{-1}\mathbb{E}[X_1(M)Y_1].$

< 回 > < 三 > < 三 >

Implications for PoSI

• These results imply that if $k \log(ep/k) = o(\sqrt{n})$, then as $n \to \infty$, simultaneously for all $|M| \le k$,

$$\sqrt{n}\left(\hat{\beta}_{n,M}-\beta_M\right) \approx \frac{1}{\sqrt{n}}\sum_{i=1}^n \psi_M(Z_i).$$

 This implies one can apply bootstrap to estimate quantiles of the "max-|t|" statistic:

$$\max |\mathsf{t}| := \max_{|M| \le k, j \in M} \left| \frac{\sqrt{n}(\hat{\beta}_{n,M}(j) - \beta_M(j))}{\hat{\sigma}_M(j)} \right|$$

• The linear representation result holds also for functionally dependent and/or non-identically distributed observations. See Kuchibhotla et al. (2018b).

2 PoSI in High-dimensions under Misspecification

3 Three PoSI Confidence Regions

4 Numerical Examples

5 Summary

- The "max-|*t*|" statistic was used for PoSI in Berk et al. (2013) and Bachoc et al. (2016).
- max-|t| is definitely not the only choice. So, can we do any better?
- In regression analysis, there is a hierarchical structure: model *M* and then covariate *j* in model *M*.
- Ignoring this structure leads to certain deficiencies of the "max-|t|" confidence regions.

To follow: Deficiencies of max-|t| and new PoSI Regions

The second se

Define

$$T_M := \max_{j \in M} \left| \frac{\sqrt{n} \left(\hat{\beta}_{n,M}(j) - \beta_M(j) \right)}{\hat{\sigma}_M(j)} \right| \quad \text{and} \quad \max |t| := \max_{|M| \le k} |T_M|.$$

• Suppose $M \subset M'$ are two models. Then T_M is usually smaller than $T_{M'}$: under certain assumptions,

 $\mathbb{E}[T_M] \asymp \sqrt{\log |M|}$ and $\mathbb{E}[T_{M'}] \asymp \sqrt{\log |M'|}$.

• So, the maximum in the max-|t| is usually attained at the largest model implying larger confidence regions for smaller models.

Smaller Models should have Smaller Confidence Regions

Andreas & Arun, Larry's Group (UPenn)

• For any two (fixed) models M, M', as $n \to \infty$,

$$\max\left\{\sqrt{\frac{n}{|M|}}\left\|\hat{\beta}_{n,M}-\beta_{M}\right\|_{2}, \sqrt{\frac{n}{|M'|}}\left\|\hat{\beta}_{n,M'}-\beta_{M'}\right\|_{2}\right\}=O_{p}\left(1\right).$$

- So, without model selection smaller models have smaller confidence regions.
- But the max-|t| confidence regions do NOT maintain this.
- This is of importance especially if the total number of covariates is larger than the sample size.

Deficiencies of max-|t| Regions: Part II

 To understand the second major deficiency of max-|t| regions, consider the gram matrix

$$\hat{\Sigma}_n := \begin{bmatrix} I_{p-1} & c\mathbf{1}_{p-1} \\ c\mathbf{1}_{p-1}^\top & 1 \end{bmatrix},$$

with $c^2 < 1/(p-1)$ and where $\mathbf{1}_{p-1} = (1, 1, ..., 1)^{\top}$.

- In this setting for most submodels, the covariates are uncorrelated but the full model is highly collinear for c² ≈ 1/(p − 1).
- It was shown in Berk et al. (2013) that max-|t| ≍ √p. But if we ignore the last covariate, then max-|t| ≍ √log p.

Collinearity in a model should not affect confidence regions for another model.

Andreas & Arun, Larry's Group (UPenn)

How to Remedy this: A Simplified Example

- Suppose W_j ~ N(μ_j, 1) for 1 ≤ j ≤ p. We want PoSI for μ_j for j
 chosen based on the sequence.
- If W_j are independent, then max-|t| confidence region for $\mu_{\hat{j}}$ is essentially

$$\{ heta: |W_{\hat{j}} - heta| \le (2 \log p)^{1/2}\}.$$

• Is this the best?? Consider the statistic

$$S^\star := \max_{1 \leq j \leq p} rac{|\mathcal{W}_j - heta_j|}{(2\log(j))^{1/2}} \qquad \leftarrow ext{ index dependent scaling}.$$

It is easy to prove that S^{*} = O_p(1) (even if p = ∞). This statistic implies the confidence region for μ_i:

$$\left\{ heta: |W_{\hat{j}} - heta| \leq C(2\log(\hat{j}))^{1/2}
ight\}$$

• This is much less conservative if the chosen \hat{j} is not too big.

Simplified Example Contd.

Once again the confidence regions are

$$\{\theta: |W_{j} - \theta| \le (2\log p)^{1/2}\},$$
(1)

$$\{\theta: |W_{\hat{j}} - \theta| \le C(2\log(\hat{j}))^{1/2}\}.$$
(2)

- Confidence region (2) is uniformly better than (1) (rate-wise).
- Furthermore, both regions (1) and (2) are tight, i.e., there is a *j* such that

$$W_{\hat{j}} - \mu_{\hat{j}}| = \max_{1 \le j \le p} |W_j - \mu_j|,$$

and there is also a \hat{j} such that

$$\frac{|W_{\hat{j}} - \mu_{\hat{j}}|}{(2\log(\hat{j}))^{1/2}} = \max_{1 \le j \le p} \frac{|W_j - \mu_j|}{(2\log(j))^{1/2}}.$$

Moral of the story: layer-by-layer standardization helps.

Three Confidence Regions

• Recall the max-|t| for model M and standardized max-|t| as

$$T_M := \max_{j \in M} \left| \frac{\sqrt{n} \left(\hat{\beta}_M(j) - \beta_M(j) \right)}{\hat{\sigma}_M(j)} \right|, \text{ and } T_M^\star := \frac{T_M - \mathbb{E}[T_M]}{\sqrt{\operatorname{Var}(T_M)}}$$

• Consider the following three max statistics:

$$\begin{split} T_k^{(1)} &:= \max_{|M| \le k} \ T_M, \\ T_k^{(2)} &:= \max_{1 \le s \le k} \left(\frac{\max_{|M| = s} T_M^\star - E_s}{SD_s} \right), \text{ where } E_s := \mathbb{E} \left[\max_{|M| = s} T_M^\star \right], \\ T_k^{(3)} &:= \max_{1 \le s \le k} \left(\frac{\max_{|M| \le s} T_M^\star - E_s^\star}{SD_s^\star} \right), \text{ where } E_s^\star := \mathbb{E} \left[\max_{|M| \le s} T_M^\star \right]. \end{split}$$

The quantities SD_s and SD_s^* are defined similarly to E_s and E_s^* .

Three Confidence Regions Contd.

• Define for $\theta \in \mathbb{R}^{|M|}$,

$$T_{M}(\theta) := \max_{j \in M} \left| \sqrt{n} (\hat{\beta}_{M}(j) - \frac{\theta(j)}{\theta(j)}) / \hat{\sigma}_{n,M}(j) \right|,$$

and consider the confidence regions (rectangles) are given by

$$\begin{aligned} \hat{\mathcal{R}}_{n,M}^{(1)} &:= \left\{ \theta : \ T_M(\theta) \le \mathcal{K}_{\alpha}^{(1)} \right\}, \\ \hat{\mathcal{R}}_{n,M}^{(2)} &:= \left\{ \theta : \ T_M(\theta) \le \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(E_s + SD_s\mathcal{K}_{\alpha}^{(2)}) \right\}, \\ \hat{\mathcal{R}}_{n,M}^{(3)} &:= \left\{ \theta : \ T_M(\theta) \le \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(E_s^{\star} + SD_s^{\star}\mathcal{K}_{\alpha}^{(3)}) \right\}. \end{aligned}$$

Here $K_{\alpha}^{(j)}$ denote the quantiles of $T_k^{(j)}$ respectively for j = 1, 2, 3.

 The quantiles K_α^(j) can be estimated using multiplier bootstrap (where one replaces E[T_M], Var(T_M), E_s, SD_s by their estimators).

- The three confidence regions provide asymptotically valid post-selection inference.
- The regions $\hat{\mathcal{R}}_{n,M}^{(j)}$, j = 2, 3 provide model dependent scaling and so give shorter confidence regions for smaller models.
- Because of the model-dependent scaling for the last two, they are less conservative than the max-|t| confidence regions.
- The three maximum-statistics listed here are not the only options and one can get very creative in designing others.

- 2 PoSI in High-dimensions under Misspecification
- 3 Three PoSI Confidence Regions
- 4 Numerical Examples

5 Summary

A (10) > A (10) > A (10)

Boston Housing Data

The Boston housing dataset contains data on n = 506 median value of a house along with 13 predictors.

The confidence regions for model $M \in \mathcal{M}(k)$ are given by

$$|T_M(\theta)| \leq \begin{cases} \mathcal{K}_{\alpha}^{(1)}, \\ \mathcal{C}_M^{(2)} := \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(\mathcal{E}_s + \mathcal{SD}_s \mathcal{K}_{\alpha}^{(2)}), \\ \mathcal{C}_M^{(3)} := \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(\mathcal{E}_s^{\star} + \mathcal{SD}_s^{\star} \mathcal{K}_{\alpha}^{(3)}). \end{cases}$$

To understand how small/wide the last two confidence regions are, we compute:

$$\operatorname{Summary}\left(\frac{C_{M}^{(2)}}{\kappa_{\alpha}^{(1)}}: M \in \mathcal{M}(k)\right) \text{ and } \operatorname{Summary}\left(\frac{C_{M}^{(3)}}{\kappa_{\alpha}^{(1)}}: M \in \mathcal{M}(k)\right).$$

This tells for what proportion of models are the second and third regions shorter/wider and by how much?

Boston Housing Data Contd.

There are 14 predictors including the intercept. $k \in \{1, ..., 14\}$ represents the maximum model size allowed and j = 2, 3 represents the last two confidence regions.

Here we consider two cases k = 6 and k = 14 (NO file drawer prob.!!).

Table: Comparison of Constants in $\hat{\mathcal{R}}_{n,M}^{(2)}$ and $\hat{\mathcal{R}}_{n,M}^{(3)}$ to max-|t| constant.

$Quantiles \rightarrow$		Min.	5%	25%	50%	Mean	75%	95%	Max.
<i>k</i> = 6	<i>j</i> = 2	0.702	0.978	1.037	1.060	1.052	1.077	1.098	1.140
						1.062			
<i>k</i> = 14	<i>j</i> = 2	0.718	0.996	1.044	1.065	1.060	1.083	1.105	1.148
	<i>j</i> = 3	0.678	0.999	1.050	1.070	1.064	1.086	1.108	1.147

About 30% gain with about 15% loss over all models!

For $\geq 90\%$ of models, the confidence regions are wider.

Andreas & Arun, Larry's Group (UPenn)

Construction of PoSI Statistics

3

- 2 PoSI in High-dimensions under Misspecification
- 3 Three PoSI Confidence Regions
- 4 Numerical Examples

- We have provided post-selection inference allowing for increasing number of models for linear regression.
- Based on the Gaussian approximation results, we have constructed and implemented three different PoSI confidence regions.
- All three confidence regions are asymptotically tight. This implies that no one can uniformly dominate the other.
- A generally interesting question: What kind of maximum statistic should be to consider?
- Efficient algorithms and detailed simulation studies are under development.

3 > 4 3

References

- Bachoc, F., Preinerstorfer, D., and Steinberger, L. (2016). Uniformly valid confidence intervals post-model-selection. arxiv.org/abs/1611.01043.
- [2] Banerjee, D., Kuchibhotta, A. K., and Mukherjee, S. (2018). Cramér-type large deviation and non-uniform central limit theorems in high dimensions. arXiv.org/abs/1806.06153.
- [3] Belloni, A., Chernozhukov, V., Chetverikov, D., Hansen, C., Kato, K., et al. (2018). High-dimensional econometrics and regularized gmm. Technical report. Centre for Microdata Methods and Practice. Institute for Fiscal Studies.
- [4] Berk, R., Brown, L. D., Buja, A., Zhang, K., Zhao, L. (2013) Valid post-selection inference. Ann. Statist. 41, no. 2, 802–837.
- [5] Kuchibhotla, Brown, Buja, Berk, Zhao, George (2018a) Valid Post-selection Inference in Assumption-lean Linear Regression. arXiv.org/abs/1806.04119.
- [6] Kuchibhotta, Brown, Buja, Zhao, George (2018b) A Model Free Perspective for Linear Regression: Uniform-in-model Bounds for Post Selection Inference. arXiv.org/abs/1802.05801.
- Kuchibhotla, Brown, Buja, Zhao, George (2018+) A Note on Post-selection Inference for M-estimators. in preparation.

Thank You Questions?

Andreas & Arun, Larry's Group (UPenn)

Construction of PoSI Statistics

・ロト ・ 四ト ・ ヨト ・ ヨト