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Linear Regression

Suppose (Xi ,Yi) ∈ Rp × R (1 ≤ i ≤ n) are random vectors
available as data.
We apply linear regression on this data.
The least squares estimator of “slope” vector is β̂ given by

β̂ =
(
En[XX>]

)−1
(En[XY ]).

(En represents empirical mean.)
If the random vectors satisfy weak law of large numbers, then this
estimator converges (in probability) to

β0 =
(
E[XX>]

)−1
(E [XY ]).

β0 has an interpretation as best linear predictor (slope) in terms of
squared error loss.
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Some Comments

It is important to recognize that to use linear regression, we do
NOT need any model or distributional assumptions.
We do NOT even require independence or identical distributions
for random vectors. Existence of LLN is enough.
This perspective also works if the covariate vectors Xi are treated
as fixed.
The target β0 coincides with the usual model parameter under a
true linear model.
CLT: If the random vectors (Xi ,Yi) are independent with finite
fourth moments, then

n1/2
(
β̂ − β0

)
L→ N

(
0, J−1KJ−1

)
, ← efficiency

with J = E[XX>] and K = E
[
XX>(Y − X>β0)2] .
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Some Notation

We have p covariates and model selection refers to choosing a
subset M ⊆ {1,2, . . . ,p} stating which covariates to consider in
the model.
For any vector v ∈ Rp and model M, the vector v(M) ∈ R|M|
denotes the sub-vector of v with indices in M.
For instance, if v = (1,0,5,−1), M = {2,4} and p = 4, then
v(M) = (0,−1).
Let for any model M ⊆ {1,2, . . . ,p},

Σn(M) := En

[
X (M)X>(M)

]
and Σ(M) := E

[
X (M)X>(M)

]
.

Γn(M) := En [X (M)Y ] and Γ(M) := E [X (M)Y ] .

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 7 / 22



Some Notation

We have p covariates and model selection refers to choosing a
subset M ⊆ {1,2, . . . ,p} stating which covariates to consider in
the model.
For any vector v ∈ Rp and model M, the vector v(M) ∈ R|M|
denotes the sub-vector of v with indices in M.
For instance, if v = (1,0,5,−1), M = {2,4} and p = 4, then
v(M) = (0,−1).
Let for any model M ⊆ {1,2, . . . ,p},

Σn(M) := En

[
X (M)X>(M)

]
and Σ(M) := E

[
X (M)X>(M)

]
.

Γn(M) := En [X (M)Y ] and Γ(M) := E [X (M)Y ] .

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 7 / 22



Some Notation

We have p covariates and model selection refers to choosing a
subset M ⊆ {1,2, . . . ,p} stating which covariates to consider in
the model.
For any vector v ∈ Rp and model M, the vector v(M) ∈ R|M|
denotes the sub-vector of v with indices in M.
For instance, if v = (1,0,5,−1), M = {2,4} and p = 4, then
v(M) = (0,−1).
Let for any model M ⊆ {1,2, . . . ,p},

Σn(M) := En

[
X (M)X>(M)

]
and Σ(M) := E

[
X (M)X>(M)

]
.

Γn(M) := En [X (M)Y ] and Γ(M) := E [X (M)Y ] .

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 7 / 22



Some Notation

We have p covariates and model selection refers to choosing a
subset M ⊆ {1,2, . . . ,p} stating which covariates to consider in
the model.
For any vector v ∈ Rp and model M, the vector v(M) ∈ R|M|
denotes the sub-vector of v with indices in M.
For instance, if v = (1,0,5,−1), M = {2,4} and p = 4, then
v(M) = (0,−1).
Let for any model M ⊆ {1,2, . . . ,p},

Σn(M) := En

[
X (M)X>(M)

]
and Σ(M) := E

[
X (M)X>(M)

]
.

Γn(M) := En [X (M)Y ] and Γ(M) := E [X (M)Y ] .

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 7 / 22



Notation Contd.

Define the least squares estimator and target as

β̂M := arg min
θ∈R|M|

En

[
(Y − X>(M)θ)2

]
βM := arg min

θ∈R|M|
E
[
(Y − X>(M)θ)2

]
No matter whether M is fixed or random, β̂M is estimating βM .
What it means is secondary.
For any 1 ≤ k ≤ p, define

M(k) = {M ⊆ {1,2, . . . ,p} such that |M| ≤ k}.

Define, finally,

D2n := ‖Σn − Σ‖∞ and D1n := ‖Γn − Γ‖∞ .

All the rates about β̂M − βM can be bounded in terms of D1n and
D2n (possibly sub-optimally).
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Uniform (in Models) Results

Table: Uniform Rates of Convergence (
∨

k ≡ supM∈M(k)).

Quantity Rate Bound Sub-Gaussianity

∨
k

∥∥∥β̂M − βM

∥∥∥
1

k(D1n +D2nS1,k ) k
√

log p/n∨
k

∥∥∥β̂M − βM

∥∥∥
2

k1/2D1n + kD2nS2,k
√

k log p/n∨
k ‖Σn(M)− Σ(M)‖op kD2n

√
k log p/n

Here

S1,k := sup
M∈M(k)

‖βM‖1 and S2,k := sup
M∈M(k)

‖βM‖2 .
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Two Famous Quotes . . .

. . . and two ways of invalidating inference!!

John. W. Tukey:
The greatest value of a picture is when it forces us to
notice what we never expected to see.

. . . more emphasis needed to be placed on using data to
suggest hypotheses to test.

George E. P. Box:
all models are wrong, but some are useful.
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The PoSI Problem

We concentrate on the problem of constructing valid confidence
regions which readily allows us to get valid tests of hypotheses.
The PoSI problem is given by

Problem
Construct a set of confidence regions (depending on α)

{R̂M : M ∈M}

for some non-random set of models,M, such that for any random
model M̂ with P(M̂ ∈M)→ 1,

lim inf
n→∞

P
(
βM̂ ∈ R̂M̂

)
≥ 1− α.
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The Basic Lemma

Lemma
For any set of confidence regions

{R̂M : M ∈M},

and any random model M̂ satisfying P(M̂ ∈M) = 1, the following
lower bound holds:

P
(
βM̂ ∈ R̂M̂

)
≥ P

( ⋂
M∈M

{
βM ∈ R̂M

})
.

We will provide confidence regions such that the right hand
probability is bounded below by 1− α (asymptotically).
This Lemma is also the basis for valid PoSI in (fixed covariate)
setting of Berk et al. (2013).
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Some More Notation

Recall

D1n := ‖Γn − Γ‖∞ and D2n := ‖Σn − Σ‖∞ .

Define C1(α) and C2(α) by

P
(
D1n ≤ C1(α) and D2n ≤ C2(α)

)
≥ 1− α.

In the following, we give three different confidence regions that
satisfy the validity.
If k = o(

√
n/ log p), then

lim inf
n→∞

P

 ⋂
M∈M(k)

{
βM ∈ R̂M

} ≥ 1− α
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PoSI-Dantzig

Define for any model M ⊆ {1,2 . . . ,p},

R̂M :=
{
θ ∈ R|M| :

∥∥∥Σn(M)
(
β̂M − θ

)∥∥∥
∞
≤ C1(α) + C2(α)

∥∥∥β̂M

∥∥∥
1

}
.

Note the left hand side is

Σn(M)
(
β̂M − θ

)
=

1
n

n∑
i=1

Xi(M)
(

Yi − X>i (M)θ
)
.

Thus, the confidence set is very similar to the constraint set of
Dantzig selector and so the name PoSI-Dantzig.
Validity does not require either independence or identical
distribution for the random vectors.
It allows for diverging number of covariates. If (Xi ,Yi) are
independent and sub-Gaussian then for k = o(

√
n/ log p),

Leb
(
R̂M

)
= Op

(√
|M| log p

n

)|M|
uniformly for M ∈M(k).
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PoSI-Lasso

Define for M ⊆ {1,2, . . . ,p},

R̂M :=

{
θ : L̂M(θ) ≤ L̂M(β̂M) + 4C1(α)

∥∥∥β̂M

∥∥∥
1

+ 2C2(α)
∥∥∥β̂M

∥∥∥2

1

}
,

where
L̂M(θ) = En(Y − X>(M)θ)2.

Note C2(α) is related to the quantile of ‖Σn − Σ‖∞. This is exactly
zero, if covariates are treated fixed.

In this case, the right hand side is exactly the same as the lasso
objective function. Hence the name PoSI-Lasso.

Validity does not require either independence or identical
distributions for the random vectors.
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PoSI-SqrtLasso

Define the confidence set

R̂M :=

{
θ : L̂

1
2
M(θ) ≤ L̂

1
2
M(β̂M) + 2C(α)

∥∥∥β̂M

∥∥∥
1

}
,

where
C2(α) = max{C1(α),C2(α)}.

The right hand side is exactly the objective function of square-root
lasso. Hence the name PoSI-SqrtLasso.

Again the validity does not require either independence or
identical distribution for the random vectors.

All these three confidence regions are valid as long as C1(α) and
C2(α) are valid quantiles (or their estimators).
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Multiplier Bootstrap

All the three confidence regions depend on C1(α) and C2(α) for
α ∈ (0,1).
For the cases of independent random vectors and certain
dependence settings, (with log p = o(n1/5)) multiplier bootstrap
works and gives correct estimators of (C1(α),C2(α)).
If w1,w2, . . . ,wn are mean zero independent random variables
with Ew2

i = Ew3
i = 1, then it can be proved that with high

probability,

P (‖En[Z ]− E[Z ]‖∞ ≤ t)

≤ P
(
‖En [w (Z − EnZ )]‖∞ ≤ t

∣∣∣∣Z n
1

)
+ Op

(
(log p)5

n

)1/6

.

Here Z1,Z2, . . . ,Zn are independent random vectors in Rp. The
result applies for dependent variables with some changes in rates.

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 20 / 22



Multiplier Bootstrap

All the three confidence regions depend on C1(α) and C2(α) for
α ∈ (0,1).
For the cases of independent random vectors and certain
dependence settings, (with log p = o(n1/5)) multiplier bootstrap
works and gives correct estimators of (C1(α),C2(α)).
If w1,w2, . . . ,wn are mean zero independent random variables
with Ew2

i = Ew3
i = 1, then it can be proved that with high

probability,

P (‖En[Z ]− E[Z ]‖∞ ≤ t)

≤ P
(
‖En [w (Z − EnZ )]‖∞ ≤ t

∣∣∣∣Z n
1

)
+ Op

(
(log p)5

n

)1/6

.

Here Z1,Z2, . . . ,Zn are independent random vectors in Rp. The
result applies for dependent variables with some changes in rates.

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 20 / 22



Multiplier Bootstrap

All the three confidence regions depend on C1(α) and C2(α) for
α ∈ (0,1).
For the cases of independent random vectors and certain
dependence settings, (with log p = o(n1/5)) multiplier bootstrap
works and gives correct estimators of (C1(α),C2(α)).
If w1,w2, . . . ,wn are mean zero independent random variables
with Ew2

i = Ew3
i = 1, then it can be proved that with high

probability,

P (‖En[Z ]− E[Z ]‖∞ ≤ t)

≤ P
(
‖En [w (Z − EnZ )]‖∞ ≤ t

∣∣∣∣Z n
1

)
+ Op

(
(log p)5

n

)1/6

.

Here Z1,Z2, . . . ,Zn are independent random vectors in Rp. The
result applies for dependent variables with some changes in rates.

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 20 / 22



Multiplier Bootstrap

All the three confidence regions depend on C1(α) and C2(α) for
α ∈ (0,1).
For the cases of independent random vectors and certain
dependence settings, (with log p = o(n1/5)) multiplier bootstrap
works and gives correct estimators of (C1(α),C2(α)).
If w1,w2, . . . ,wn are mean zero independent random variables
with Ew2

i = Ew3
i = 1, then it can be proved that with high

probability,

P (‖En[Z ]− E[Z ]‖∞ ≤ t)

≤ P
(
‖En [w (Z − EnZ )]‖∞ ≤ t

∣∣∣∣Z n
1

)
+ Op

(
(log p)5

n

)1/6

.

Here Z1,Z2, . . . ,Zn are independent random vectors in Rp. The
result applies for dependent variables with some changes in rates.

Arun Kumar, PoSI Group (Wharton School) Valid PoSI with Random X WHOA-PSI 2017 20 / 22



Summary and Extensions

We proved some new uniform rates of convergence results in
linear regression with NO model/distributional assumptions.

These results apply to various structurally dependent random
vectors with rates accordingly affected.

We described three different confidence regions that have valid
coverage no matter how the model is chosen.

All these methods are computationally efficient and only require
computation of C1(α),C2(α) once for the dataset.

The construction of these confidence regions (for now) seems
very specific to the quadratic structure of the objective function.

We also developed two different approaches (based on t- and
F -tests) that apply to most of the M-estimation problems,
including, generalized linear models.
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