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Some History

The practice of data analysis often involves exploring the data
thoroughly before a formal modeling begins. Exploratory Data
Analysis (EDA) is an example.

Reproducibility/replicability crisis in science is sometimes
attributed to this type of data analysis.

Another reason for invalid statistical inference is the “blind” use of
classical tools as if all models used are correctly specified.

Wanted: Valid Inference under Possible Misspecification
and Arbitrary data-driven Modeling!
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Some Review

Valid inference under data-driven modeling is the current “hot
topic”: Post-selection Inference (PoSI).

Berk et al. (2013) solved PoSI in a well-specified linear regression.

Jonathan Taylor and others have developed selective inference
techniques: Lee et al. (2016), Tibshirani et al. (2016), Tian et al.
(2016), for example.

Because of various issues like Fragility and, impossibility results of
Leeb and Postscher (2008), related to selective inference, we
favor the ideology of Berk et al. (2013).

Bachoc et al. (2016) generalized the setting of Berk et al. (2013)
to allow misspecification but deals fixed number of models.
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Motivating Example

Suppose (Xi ,Yi) ∈ Rp+1 are independent random vectors and select a
subset of variables M̂ ⊆ {1,2, . . . ,p}, using any subset selection
procedure. Compute the OLS linear regression estimator β̂n,M̂ :

β̂n,M̂ := arg min
θ∈R|M̂|

1
n

n∑
i=1

{
Yi − θ>Xi(M̂)

}2
.

Here Xi(M̂) represents the sub-vector of Xi with indices in M̂.

Problem
– What is β̂n,M̂ estimating?

– How to perform inference for the resulting target?

– How large can |M̂| be in terms of the sample size n?
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Some Notation

Define set of models of size bounded by k as

M(k) := {M ⊆ {1,2, . . . ,p} : 1 ≤ |M| ≤ k} .

Define the Gram matrix and covariance vector for model M as

Σ̂n := Ên

[
XiX>i

]
, and Γ̂n := Ên [XiYi ] ,

Σn := Ēn

[
XiX>i

]
, and Γn := Ēn [XiYi ] .

Here Ên[·] =
∑n

i=1[·]/n and Ēn[·] =
∑n

i=1 E[·]/n.

So, the OLS estimate β̂n,M and target βn,M for model M are

β̂n,M =
(

Σ̂n(M)
)−1

Γ̂n(M), βn,M := (Σn(M))−1 Γn(M).

For 1 ≤ j ≤ |M|, let β̂n,M(j) represent the j-th coordinate of β̂n,M .
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Uniform-in-model Result (Kuchibhotla et al. 2018b)

If the observations (Xi ,Yi) ∈ Rp+1 are independent and sub-Gaussian,
then

max
|M|≤k

∥∥∥β̂n,M − βn,M

∥∥∥
2

= Op

(√
k log(ep/k)

n

)
,

and so,

max
j∈M,|M|≤k

∣∣∣β̂n,M(j)− βn,M(j)
∣∣∣ = Op

(√
k log(ep/k)

n

)
.

Trivial Inequality: If |M̂| ≤ k , then

∥∥∥β̂n,M̂ − βn,M̂

∥∥∥
2
≤ max
|M|≤k

∥∥∥β̂n,M − βn,M

∥∥∥
2

= Op

(√
k log(ep/k)

n

)
.

So, β̂n,M̂ is “estimating” βn,M̂ .
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General Framework

Let {θq : q ∈ Q} be a collection of real-valued functionals.

Let {θ̂q : q ∈ Q} be a collection of estimators from independent
random variables Z1, . . . ,Zn satisfying for functions {ψn,q(·)},

√
n
(
θ̂q − θq

)
=

1√
n

n∑
i=1

ψn,q(Zi) + Rn,q (AULR)

(Asymptotic Uniform Linear Representation).

The analogy to model selection:

– Q = {(j ,M) : j ∈ M,M ∈M(k)}.

– For q = (j ,M), θq = βn,M(j) (functional) and θ̂q = β̂n,M(j) (estimator).

– Inference is sought for θq̂ (a random functional).
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The PoSI Problem

If Rn,q is uniformly close to zero, then θ̂q̂ − θq̂ ≈ 0. Without further
information, a non-random target for θ̂q̂ does not exist.

The PoSI problem (Confidence Regions Version) is as follows:

Problem
Construct a set of confidence regions (depending on α)

{R̂n,q : q ∈ Q}

for some non-random set of models, Q, such that for any random
model q̂ with P(q̂ ∈ Q) = 1,

lim inf
n→∞

P
(
θq̂ ∈ R̂n,q̂

)
≥ 1− α.
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Equivalence of PoSI and Simultaneous Inference

Theorem (Kuchibhotla et al. (2018a))

For any set of confidence regions {R̂n,q : q ∈ Q} and α ∈ [0,1], the
following are EQUIVALENT:

1 the post-selection inference problem is solved, that is,

P
(
θq̂ ∈ R̂n,q̂

)
≥ 1− α,

for all random models q̂ ∈ Q depending on the data.
2 the simultaneous inference problem is solved, that is,

P

⋂
q∈Q

{
θq ∈ R̂n,q

} ≥ 1− α.

Only (2)⇒ (1) was proved in Berk et al. (2013).
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Solving Simultaneous Inference Problem

To solve the PoSI problem, we introduce the following assumptions:
(A1) |Q| 6=∞ and √

log(e|Q|) max
q∈Q
|Rn,q| = op(1).

(A2) The influence functions {ψn,q(·) : q ∈ Q} are sub-exponential.

(A3) There exists estimators σ̂2
n,q of σ2

n,q = nVar(θ̂q − θq) such that

log(e|Q|) max
q∈Q

∣∣∣∣ σ̂n,q

σn,q
− 1
∣∣∣∣ = op(1).

(A4) There exists estimators {ψ̂n,q : q ∈ Q} of the influence functions
satisfying

log(e|Q|) max
q∈Q

1
n

n∑
i=1

(
ψ̂n,q(Zi)− ψn,q(Zi)

)2
= op(1).

Arun Kumar, PoSI Group (Wharton School) Asymptotic Uniform Linear Rep. July 12, 2018 14 / 40



Some Comments

The assumptions allow for a Gaussian approximation result for
{
√

n(θ̂q − θq),q ∈ Q}.

If |Q| = 1, then the assumptions reduce to the classical ones
leading to asymptotic normality based inference.

The assumption of sub-exponential influence functions can be
weakened substantially without much difficulty.

The framework is very closely related to the “Many Approximate
Means (MAM)” framework of Belloni et al. (2018).

Although the results can be extended to infinitely many models,
we restrict to |Q| 6=∞ but it can grow with n (almost
exponentially).
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Some Notation

Define the concatenated scaled influence function vector as

ϕn,Q(Zi) :=

(
ψn,q(Zi)

σn,q
: q ∈ Q

)>
.

Based on the estimators of influence functions, define

ϕ̂n,Q(Zi) :=

(
ψ̂n,q(Zi)

σ̂n,q
: q ∈ Q

)>
.

Finally, define a Gaussian “process” Gn,Q ∈ R|Q| with mean zero
and the covariance given by

Var (Gn,Q) = Var

(
1√
n

n∑
i=1

ϕn,Q(Zi)

)
.
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Gaussian Approximation and Bootstrap

Let Are be the set of all rectangles in R|Q| and Dn = {Z1, . . . ,Zn}.

Theorem (Belloni et al. (2018) and Kuchibhotla et al. (2018+))

Under assumptions (A1)–(A3), if log7(|Q|) = o(n), then

sup
A∈Are

∣∣∣∣∣∣P
{√n(θ̂q − θq)

σ̂n,q

}
q∈Q

∈ A

− P (Gn,Q ∈ A)

∣∣∣∣∣∣ = o(1).

Under assumptions (A1)–(A4), if log7(|Q|) = o(n) and Z1, . . . ,Zn
are iid, then

sup
A∈Are

∣∣∣∣∣P
(

1√
n

n∑
i=1

ei ϕ̂n,Q(Zi) ∈ A
∣∣∣∣Dn

)
− P (Gn,Q ∈ A)

∣∣∣∣∣ = o(1).

Here e1, . . . ,en ∼ N(0,1).
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Sketch of the Proof

By Assumptions (A1) and (A3),
√

n(θ̂q − θq)

σ̂n,q

(A3)
≈

√
n(θ̂q − θq)

σn,q

(A1)
≈ 1√

n

n∑
i=1

ψn,q(Zi)

σn,q
.

The approximations above are uniform in q ∈ Q. CLT for averages.
For bootstrap, note

1
n

n∑
i=1

ei ϕ̂n,Q(Zi)

∣∣∣∣Dn ∼ N

(
0,

1
n

n∑
i=1

ϕ̂n,Q(Zi)ϕ̂
>
n,Q(Zi)

)
,

and by assumptions (A2) and (A4)

1
n

n∑
i=1

ϕ̂n,Q(Zi)ϕ̂
>
n,Q(Zi)

(A4)
≈ 1

n

n∑
i=1

ϕn,Q(Zi)ϕ
>
n,Q(Zi)

(A2)
≈ Var (Gn,Q) .︸ ︷︷ ︸

requires E[φn,q(Zi )] = 0 which uses iid.
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An Illustration for Linear Regression: Recap

Suppose Z1 = (X1,Y1), . . ., Zn = (Xn,Yn) denote independent
random vectors in Rp × R.
RecallM(k) as all submodels of size bounded by k and set

Q := {(j ,M) : j ∈ M, M ∈M(k)}.

The collection of functionals is{
βn,M(j) : q = (j ,M) ∈ Q

}
.

Hence, the number of functionals is

|Q| =
k∑
`=1

`

(
p
`

)
≤
(

2ep
k

)k

and |Q| ≥
(p

k

)k
,

and so, |Q| � (ep/k)k and log(|Q|) � k log(ep/k).
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Verification of Assumptions (A1) and (A4)

For linear regression and smooth M-estimators, assumption (A1)
was verified in Kuchibhotla et al. (2018b). The result for OLS is:

max
|M|≤k

∥∥∥∥∥√n
(
β̂n,M − βn,M

)
− 1√

n

n∑
i=1

ψn,M(Zi)

∥∥∥∥∥
2

= Op

(
k log(ep/k)√

n

)
,

where
ψn,M(Zi) := (Σn(M))−1Xi(M)(Yi − X>i (M)βM),

Σn(M) =
1
n

n∑
i=1

E[Xi(M)X>i (M)].

A trivial estimator of influence function ψn,M satisfying (A4) is

ψ̂n,M(Zi) :=
(

Σ̂n(M)
)−1

Xi(M)(Yi − β̂>MXi(M)),

with Σ̂n(M) representing the Gram matrix for model M.
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Verification of (A3)

Under the assumption of independence without a well-specified
model, the estimator for the variance of

√
n(β̂M − βM) is given by

the sandwich:

1
n

n∑
i=1

(
Σ̂n(M)

)−1
Xi(M)

(
Yi − β̂>MXi(M)

)2
X>i (M)

(
Σ̂n(M)

)−1
.

It can be proved that the sandwich estimator is uniformly close to
the true asymptotic variance at the rate:√

k log(ep/k)

n
+

(k log(ep/k))2

n
.

Thus the result applies if k log(ep/k) = o(n1/7). Similar result
holds for smooth M-estimators based on results of Kuchibhotla et
al. (2018b).
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Construction of PoSI Confidence Regions

The Gaussian approximation result allows for PoSI confidence
regions using quantiles of max Gaussians.

If there is no structure in Q, then a “conventional” construction can
be based on the quantiles of

max
q∈Q

∣∣∣∣∣
√

n(θ̂q − θq)

σ̂n,q

∣∣∣∣∣ .
This is called the “max-|t |” statistic and was used for PoSI in Berk
et al. (2013) and Bachoc et al. (2016).

BUT, in regression analysis, there is a hierarchical structure:
model M and then covariate j in model M.

Ignoring this structure leads to certain deficiencies of the “max-|t |”
confidence regions.
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Deficiencies of max-|t| Regions: Part I

Define for any model M,

TM := max
1≤j≤|M|

∣∣∣∣∣∣
√

n
(
β̂n,M(j)− βn,M(j)

)
σ̂n,M(j)

∣∣∣∣∣∣ .
In this notation, max-|t | := max|M|≤k |TM |.
Suppose M ⊂ M ′ are two models. Then TM is usually smaller than
TM′ . Under certain assumptions,

E [TM ] �
√

log |M| and E [TM′ ] �
√

log |M ′|.

So, the maximum in the max-|t| is usually attained at the largest
model implying larger confidence regions for smaller models.

Smaller Models should have Smaller Confidence Regions
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Deficiencies of max-|t| Regions: Part II

To understand the second major deficiency of max-|t| regions,
consider the gram matrix

Σ̂n :=

[
Ip−1 c1p−1

c1>p−1 1

]
,

with c2 < 1/(p − 1) and where 1p−1 = (1,1, . . . ,1)>.

In this setting for most submodels, the covariates are uncorrelated
but the full model is highly collinear for c2 ≈ 1/(p − 1).

It was shown in Berk et al. (2013) that max-|t| � √p. But if we
ignore the last covariate, then max-|t| �

√
log p.

Collinearity in a model should not affect confidence regions
for another model.
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Three Confidence Regions

Recall the max-|t| for model M and standardized max-|t| as

TM := max
1≤j≤|M|

∣∣∣∣∣∣
√

n
(
β̂M(j)− βM(j)

)
σ̂n,M(j)

∣∣∣∣∣∣ , and T ?
M :=

TM − E[TM ]√
Var(TM)

.

Consider the following three max statistics:

T (1)
k := max

|M|≤k
TM ,

T (2)
k := max

1≤s≤k

(
max|M|=s T ?

M − Es

SDs

)
, where Es := E

[
max
|M|=s

T ?
M

]
,

T (3)
k := max

1≤s≤k

(
max|M|≤s T ?

M − E?
s

SD?
s

)
, where E?

s := E
[

max
|M|≤s

T ?
M

]
.

The quantities SDs and SD?
s are defined similarly to Es and E?

s .
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Three Confidence Regions Contd.

The confidence regions (rectangles) are given by

R̂(1)
n,M :=

{
θ : TM(θ) ≤ K (1)

α

}
, TM(θ) := max

j∈M

∣∣∣∣∣
√

n(β̂M(j)− θ(j))

σ̂n,M(j)

∣∣∣∣∣ ,
R̂(2)

n,M :=
{
θ : TM(θ) ≤ E[TM ] +

√
Var(TM)(Es + SDsK (2)

α )
}
,

R̂(3)
n,M :=

{
θ : TM(θ) ≤ E[TM ] +

√
Var(TM)(E?

s + SD?
sK (3)

α )
}
.

Here K (j)
α denote the quantiles of T (j)

k respectively for j = 1,2,3.

The regions R̂(j)
n,M , j = 2,3 provide model dependent scaling and

so give shorter confidence regions for smaller models.

Note that all these regions are tight: there exists a model-selection
procedure for which the confidence regions have (asymptotically)
exact coverage of 1− α.
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Some Comments

The three confidence regions provide asymptotically valid
post-selection inference.

Because of the model-dependent scaling for the last two, they are
less conservative than the max-|t| confidence regions.

In most applications with smaller chosen models, the last two
confidence regions turn out to be much smaller than the max-|t|
confidence regions.

Bootstrapping T (j)
k , j = 2,3 requires estimation of first two

moments of maximums and the results of Banerjee et al. (2018)
imply that consistent estimation of moments is possible by
Gaussian approximation.

The three maximum-statistics listed here are not the only options
and one can get very creative in designing others.
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Boston Housing Data

Boston housing dataset contains data on n = 506 median value of a
house along with 13 predictors like crime rate, nitric oxide
concentration, number of rooms, percent low status population.

The confidence regions for model M ∈M(k) are given by

|TM(θ)| ≤


K (1)
α ,

C(2)
M := E[TM ] +

√
Var(TM)(Es + SDsK (2)

α ),

C(3)
M := E[TM ] +

√
Var(TM)(E?

s + SD?
sK (3)

α ).

We estimate the right hand side quantities using multiplier bootstrap.

To understand how small/wide the last two confidence regions are, we
compute:

Summary
(

C(2)
M

K (1)
α

: M ∈M(k)

)
and Summary

(
C(3)

M

K (1)
α

: M ∈M(k)

)
.
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Boston Housing Data Contd.

Recall that Boston housing data has 14 predictors including the
intercept. 1 ≤ k ≤ 14 represents the maximum model size allowed and
j = 2,3 represents two confidence regions. Here we consider two
cases k = 6 and k = 14.

Table: Comparison of Constants in R̂(2)
n,M and R̂(3)

n,M to max-|t| constant.

Quantiles→ Min. 5% 25% 50% Mean 75% 95% Max.
k = 6 j = 2 0.702 0.978 1.037 1.060 1.052 1.077 1.098 1.140

j = 3 0.692 0.980 1.047 1.072 1.062 1.090 1.112 1.155
k = 14 j = 2 0.718 0.996 1.044 1.065 1.060 1.083 1.105 1.148

j = 3 0.678 0.999 1.050 1.070 1.064 1.086 1.108 1.147

About 30% gain with about 15% loss over all models!
For ≥ 90% of models, the confidence regions are wider.
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Conclusions

We have provided a unified framework for post-selection inference
allowing for increasing number of models.

We have verified the assumption for OLS and Smooth
M-estimators including GLM’s.

Based on the Gaussian approximation results, we have
constructed and implemented three different PoSI confidence
regions.

All three confidence regions are asymptotically tight. This implies
that no one can uniformly dominate the other.

An interesting question of what kind of maximum statistic to
consider is raised.

Efficienct algorithms and detailed simulation studies are under
progress.
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Notation for a General Result

Suppose (Xi ,Yi) be n random vectors and for M ⊆ {1,2, . . . ,p},
define the estimator

β̂n,M := arg min
θ∈R|M|

1
n

n∑
i=1

L
(

Yi ,X>i (M)θ
)
,

and the corresponding target

βn,M := arg min
θ∈R|M|

1
n

n∑
i=1

E
[
L
(

Yi ,X>i (M)θ
)]
.

Here L(·, ·) is a loss function convex in the second argument.
GLM’s are special case with L(y , t) = L(y , t) = ψ(t)− yt ;
logistic: ψ(u) = log(1 + exp(u)) and Poisson: ψ(u) = exp(u)
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Notation Contd.

Set

L′(y ,u) :=
∂

∂t
L(y , t)

∣∣∣∣
t=u

and L′′(y ,u) :=
∂

∂t
L′(y , t)

∣∣∣∣
t=u

.

Define

C+(y ,u) := sup
|s−t |≤u

L′′(y , s)

L′′(y , t)
(≥ 1) .

For logistic and Poisson, C+(y ,u) ≤ exp(3u) for all y .

Finally, define the estimating function for model M as

Ẑn,M(θ) :=
1
n

n∑
i=1

L′
(

Yi ,X>i (M)θ
)

Xi(M) ∈ R|M|

Ĵn,M(θ) :=
1
n

n∑
i=1

L′′
(

Yi ,X>i (M)θ
)

Xi(M)X>i (M) ∈ R|M|×|M|.
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A Main Result: Deterministic Version

Theorem
For any n, k ≥ 1 and for M ⊆ {1,2, . . . ,p}, set

δn,M :=

∥∥∥∥[Ĵn,M(βn,M)
]−1
Ẑn,M(βn,M)

∥∥∥∥
2
,

and the event

Ek ,n :=

{
max
|M|≤k

max
1≤i≤n

C+(Yi ,2 ‖Xi(M)‖2 δn,M) ≤ 3
2

}
.

On the event Ek ,n, simultaneously for all models |M| ≤ k, there exists a
unique β̂n,M ∈ R|M| satisfying

Ẑn,M(β̂n,M) = 0 and
1
2
δn,M ≤

∥∥∥β̂n,M − βn,M

∥∥∥
2
≤ 2δn,M .
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Uniform Linear Representation

Theorem
On the event Ek ,n, simultaneously for all models |M| ≤ k, the
estimators satisfy∥∥∥β̂n,M − βn,M +

[
Jn,M(βn,M)

]−1 Ẑn,M(βn,M)
∥∥∥

2
≤ ∆n,Mδn,M ,

where

Jn,M(θ) :=
1
n

n∑
i=1

E
[
L′′
(

Yi ,X>i (M)θ
)

Xi(M)X>i (M)
]
,

and

∆n,M =

∥∥∥Ĵn,M(βn,M)− Jn,M(βn,M)
∥∥∥

op

λmin

(
Jn,M(βn,M)

) + max
i

C+(Yi ,2 ‖Xi(M)‖2 δn,M)− 1.

Note that independence of observations is NOT required.
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Application

For generalized linear models (in the canonical form),

L(y , t) = ψ(t)− yt ,

for a convex function ψ(·).

In logistic and Poisson regression, the event Ek ,n becomes

max
|M|≤k

max
1≤i≤n

‖Xi(M)‖2 δn,M ≤
log 2

6
. (1)

No independence is required.

Inequality (1) holds as long as k = o(
√

n/ log p) under the tail
assumption and “weak” dependence.

The proof is based on the Banach fixed point theorem and also
applies to Cox proportional hazards model.
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