Uniform Linear Representation for Post-selection Inference¹

Arun Kumar Kuchibhotla

Department of Statistics University of Pennsylvania

July 12, 2018

Workshop Model Selection, Regularization, and Inference

¹Joint work with "Larry's Group" at Wharton, including Larry Brown, Andreas Buja, Edward George, Linda Zhao and Junhui Cai.

Arun Kumar, PoSI Group (Wharton School)

Asymptotic Uniform Linear Rep.

LAWRENCE D. BROWN † 1940 – 2018.

Arun Kumar, PoSI Group (Wharton School)

イロト イヨト イヨト イヨト

Outline

- 2 A General Framework for PoSI
- Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

Outline

Introduction and Motivating Example

- 2 A General Framework for PoSI
- 3 Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

A (1) > A (2) > A

- The practice of data analysis often involves exploring the data thoroughly before a formal modeling begins. Exploratory Data Analysis (EDA) is an example.
- Reproducibility/replicability crisis in science is sometimes attributed to this type of data analysis.
- Another reason for invalid statistical inference is the "blind" use of classical tools as if all models used are correctly specified.

Wanted: Valid Inference under Possible Misspecification and Arbitrary data-driven Modeling!

- Valid inference under data-driven modeling is the current "hot topic": Post-selection Inference (PoSI).
- Berk et al. (2013) solved PoSI in a well-specified linear regression.
- Jonathan Taylor and others have developed selective inference techniques: Lee et al. (2016), Tibshirani et al. (2016), Tian et al. (2016), for example.
- Because of various issues like *Fragility* and, *impossibility results of Leeb and Postscher (2008)*, related to selective inference, we favor the ideology of Berk et al. (2013).
- Bachoc et al. (2016) generalized the setting of Berk et al. (2013) to allow misspecification but deals fixed number of models.

< ロ > < 同 > < 回 > < 回 >

Motivating Example

Suppose $(X_i, Y_i) \in \mathbb{R}^{p+1}$ are independent random vectors and select a subset of variables $\hat{M} \subseteq \{1, 2, ..., p\}$, using any subset selection procedure. Compute the OLS linear regression estimator $\hat{\beta}_{p,\hat{M}}$:

$$\hat{\beta}_{n,\hat{\boldsymbol{\mathcal{M}}}} := \underset{\theta \in \mathbb{R}^{|\hat{\boldsymbol{\mathcal{M}}}|}}{\arg\min} \ \frac{1}{n} \sum_{i=1}^{n} \left\{ Y_{i} - \theta^{\top} X_{i}(\hat{\boldsymbol{\mathcal{M}}}) \right\}^{2}.$$

Here $X_i(\hat{M})$ represents the sub-vector of X_i with indices in \hat{M} .

Problem

- What is $\hat{\beta}_{n,\hat{M}}$ estimating?
- How to perform inference for the resulting target?

- How large can $|\hat{M}|$ be in terms of the sample size n?

Some Notation

• Define set of models of size bounded by k as

$$\mathcal{M}(k) := \left\{ M \subseteq \{1, 2, \dots, p\} : 1 \le |M| \le k \right\}.$$

• Define the Gram matrix and covariance vector for model M as

$$\hat{\Sigma}_n := \hat{\mathbb{E}}_n \left[X_i X_i^\top \right], \text{ and } \hat{\Gamma}_n := \hat{\mathbb{E}}_n \left[X_i Y_i \right], \\ \Sigma_n := \bar{\mathbb{E}}_n \left[X_i X_i^\top \right], \text{ and } \Gamma_n := \bar{\mathbb{E}}_n \left[X_i Y_i \right].$$

Here $\hat{\mathbb{E}}_n[\cdot] = \sum_{i=1}^n [\cdot]/n$ and $\overline{\mathbb{E}}_n[\cdot] = \sum_{i=1}^n \mathbb{E}[\cdot]/n$.

• So, the OLS estimate $\hat{\beta}_{n,M}$ and target $\beta_{n,M}$ for model *M* are

$$\hat{\beta}_{n,M} = \left(\hat{\Sigma}_n(M)\right)^{-1} \hat{\Gamma}_n(M), \quad \beta_{n,M} := (\Sigma_n(M))^{-1} \Gamma_n(M).$$

• For $1 \le j \le |M|$, let $\hat{\beta}_{n,M}(j)$ represent the *j*-th coordinate of $\hat{\beta}_{n,M}$.

Uniform-in-model Result (Kuchibhotla et al. 2018b)

If the observations $(X_i, Y_i) \in \mathbb{R}^{p+1}$ are independent and sub-Gaussian, then

$$\max_{M|\leq k} \left\| \hat{\beta}_{n,M} - \beta_{n,M} \right\|_{2} = O_{p}\left(\sqrt{\frac{k \log(ep/k)}{n}} \right),$$

and so,

$$\max_{j \in M, |M| \le k} \left| \hat{\beta}_{n,M}(j) - \beta_{n,M}(j) \right| = O_p\left(\sqrt{\frac{k \log(ep/k)}{n}}\right)$$

Trivial Inequality: If $|\hat{M}| \leq k$, then

$$\left\|\hat{\beta}_{n,\hat{M}} - \beta_{n,\hat{M}}\right\|_{2} \leq \max_{|M| \leq k} \left\|\hat{\beta}_{n,M} - \beta_{n,M}\right\|_{2} = O_{p}\left(\sqrt{\frac{k\log(ep/k)}{n}}\right).$$

So,
$$\hat{\beta}_{n,\hat{M}}$$
 is "estimating" $\beta_{n,\hat{M}}$.

- 2 A General Framework for PoSI
- 3 Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

A (10) > A (10) > A (10)

General Framework

- Let $\{\theta_q : q \in Q\}$ be a collection of real-valued functionals.
- Let {θ̂_q : q ∈ Q} be a collection of estimators from independent random variables Z₁,..., Z_n satisfying for functions {ψ_{n,q}(·)},

$$\sqrt{n}\left(\hat{\theta}_{q}-\theta_{q}\right)=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\psi_{n,q}(Z_{i})+R_{n,q} \tag{AULR}$$

(Asymptotic Uniform Linear Representation).

The analogy to model selection:

$$- \mathcal{Q} = \{(j, M) : j \in M, M \in \mathcal{M}(k)\}.$$

- For q = (j, M), $\theta_q = \beta_{n,M}(j)$ (functional) and $\hat{\theta}_q = \hat{\beta}_{n,M}(j)$ (estimator).
- Inference is sought for $\theta_{\hat{q}}$ (a random functional).

The PoSI Problem

- If *R_{n,q}* is uniformly close to zero, then θ̂_{q̂} − θ_{q̂} ≈ 0. Without further information, a non-random target for θ̂_{q̂} does not exist.
- The PoSI problem (Confidence Regions Version) is as follows:

Problem

Construct a set of confidence regions (depending on α)

$$\{\hat{\mathcal{R}}_{n,\boldsymbol{q}}:\,\boldsymbol{q}\in\mathcal{Q}\}$$

for some non-random set of models, Q, such that for any random model \hat{q} with $\mathbb{P}(\hat{q} \in Q) = 1$,

$$\liminf_{n\to\infty} \mathbb{P}\left(\theta_{\hat{\boldsymbol{q}}} \in \hat{\mathcal{R}}_{n,\hat{\boldsymbol{q}}}\right) \geq 1 - \alpha.$$

Equivalence of PoSI and Simultaneous Inference

Theorem (Kuchibhotla et al. (2018a))

For any set of confidence regions $\{\hat{\mathcal{R}}_{n,q}: q \in \mathcal{Q}\}$ and $\alpha \in [0, 1]$, the following are EQUIVALENT:

the post-selection inference problem is solved, that is,

$$\mathbb{P}\left(heta_{\hat{\boldsymbol{q}}}\in\hat{\mathcal{R}}_{\boldsymbol{n},\hat{\boldsymbol{q}}}
ight)\geq 1-lpha,$$

for all random models $\hat{q} \in Q$ depending on the data.

the simultaneous inference problem is solved, that is,

$$\mathbb{P}\left(\bigcap_{q\in\mathcal{Q}}\left\{\theta_{q}\in\hat{\mathcal{R}}_{n,q}\right\}\right)\geq 1-\alpha.$$

• Only $(2) \Rightarrow (1)$ was proved in Berk et al. (2013).

Solving Simultaneous Inference Problem

To solve the PoSI problem, we introduce the following assumptions: (A1) $|Q| \neq \infty$ and

$$\sqrt{\log(e|\mathcal{Q}|)} \max_{q\in\mathcal{Q}} |R_{n,q}| = o_p(1).$$

(A2) The influence functions $\{\psi_{n,q}(\cdot) : q \in Q\}$ are sub-exponential.

(A3) There exists estimators $\hat{\sigma}_{n,q}^2$ of $\sigma_{n,q}^2 = n \text{Var}(\hat{\theta}_q - \theta_q)$ such that

$$\log(e|\mathcal{Q}|) \max_{q \in \mathcal{Q}} \left| \frac{\hat{\sigma}_{n,q}}{\sigma_{n,q}} - 1 \right| = o_p(1).$$

(A4) There exists estimators $\{\hat{\psi}_{n,q}: q \in Q\}$ of the influence functions satisfying

$$\log(\boldsymbol{e}|\boldsymbol{Q}|) \max_{\boldsymbol{q}\in\boldsymbol{Q}} \frac{1}{n} \sum_{i=1}^{n} \left(\hat{\psi}_{n,\boldsymbol{q}}(\boldsymbol{Z}_{i}) - \psi_{n,\boldsymbol{q}}(\boldsymbol{Z}_{i}) \right)^{2} = o_{p}(1).$$

Some Comments

- The assumptions allow for a Gaussian approximation result for $\{\sqrt{n}(\hat{\theta}_q \theta_q), q \in Q\}.$
- If |Q| = 1, then the assumptions reduce to the classical ones leading to asymptotic normality based inference.
- The assumption of sub-exponential influence functions can be weakened substantially without much difficulty.
- The framework is very closely related to the "Many Approximate Means (MAM)" framework of Belloni et al. (2018).
- Although the results can be extended to infinitely many models, we restrict to |Q| ≠ ∞ but it can grow with *n* (almost exponentially).

• Define the concatenated scaled influence function vector as

$$arphi_{n,\mathcal{Q}}(oldsymbol{Z}_i) := \left(rac{\psi_{n,oldsymbol{q}}(oldsymbol{Z}_i)}{\sigma_{n,oldsymbol{q}}}: oldsymbol{q} \in \mathcal{Q}
ight)^ op$$

Based on the estimators of influence functions, define

$$\hat{\varphi}_{n,\mathcal{Q}}(Z_i) := \left(rac{\hat{\psi}_{n,q}(Z_i)}{\hat{\sigma}_{n,q}}: q \in \mathcal{Q}
ight)^{ op}$$

Finally, define a Gaussian "process" G_{n,Q} ∈ ℝ^{|Q|} with mean zero and the covariance given by

$$\operatorname{Var}(G_{n,\mathcal{Q}}) = \operatorname{Var}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\varphi_{n,\mathcal{Q}}(Z_i)\right).$$

.

Gaussian Approximation and Bootstrap

Let \mathcal{A}^{re} be the set of all rectangles in $\mathbb{R}^{|\mathcal{Q}|}$ and $\mathcal{D}_n = \{Z_1, \dots, Z_n\}$.

Theorem (Belloni et al. (2018) and Kuchibhotla et al. (2018+))

• Under assumptions (A1)–(A3), if $\log^{7}(|Q|) = o(n)$, then

$$\sup_{\boldsymbol{A}\in\mathcal{A}^{re}}\left|\mathbb{P}\left(\left\{\frac{\sqrt{n}(\hat{\theta}_{q}-\theta_{q})}{\hat{\sigma}_{n,q}}\right\}_{q\in\mathcal{Q}}\in\boldsymbol{A}\right)-\mathbb{P}\left(\boldsymbol{G}_{n,\mathcal{Q}}\in\boldsymbol{A}\right)\right|=o(1).$$

• Under assumptions (A1)–(A4), if $\log^7(|Q|) = o(n)$ and Z_1, \ldots, Z_n are *iid*, then

$$\sup_{\boldsymbol{A}\in\mathcal{A}^{re}}\left|\mathbb{P}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\boldsymbol{e}_{i}\hat{\varphi}_{n,\mathcal{Q}}(\boldsymbol{Z}_{i})\in\boldsymbol{A}\middle|\mathcal{D}_{n}\right)-\mathbb{P}\left(\boldsymbol{G}_{n,\mathcal{Q}}\in\boldsymbol{A}\right)\right|=\boldsymbol{o}(1).$$

Here $e_1, \ldots, e_n \sim N(0, 1)$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the Proof

• By Assumptions (A1) and (A3),

$$\frac{\sqrt{n}(\hat{\theta}_q - \theta_q)}{\hat{\sigma}_{n,q}} \stackrel{\text{(A3)}}{\approx} \frac{\sqrt{n}(\hat{\theta}_q - \theta_q)}{\sigma_{n,q}} \stackrel{\text{(A1)}}{\approx} \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{\psi_{n,q}(Z_i)}{\sigma_{n,q}}.$$

The approximations above are uniform in $q \in Q$. CLT for averages. • For bootstrap, note

$$\frac{1}{n}\sum_{i=1}^{n} \mathbf{e}_{i}\hat{\varphi}_{n,\mathcal{Q}}(Z_{i}) \bigg| \mathcal{D}_{n} \sim N\left(0, \frac{1}{n}\sum_{i=1}^{n}\hat{\varphi}_{n,\mathcal{Q}}(Z_{i})\hat{\varphi}_{n,\mathcal{Q}}^{\top}(Z_{i})\right),$$

and by assumptions (A2) and (A4)

$$\frac{1}{n}\sum_{i=1}^{n}\hat{\varphi}_{n,\mathcal{Q}}(Z_{i})\hat{\varphi}_{n,\mathcal{Q}}^{\top}(Z_{i}) \stackrel{(A4)}{\approx} \underbrace{\frac{1}{n}\sum_{i=1}^{n}\varphi_{n,\mathcal{Q}}(Z_{i})\varphi_{n,\mathcal{Q}}^{\top}(Z_{i})}_{\text{requires }\mathbb{E}[\phi_{n,g}(Z_{i})] = 0 \text{ which uses iid.}}^{(A2)} \text{Var}(G_{n,\mathcal{Q}}).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 2 A General Framework for PoSI
- Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

A (10) > A (10) > A (10)

An Illustration for Linear Regression: Recap

- Suppose Z₁ = (X₁, Y₁), ..., Z_n = (X_n, Y_n) denote independent random vectors in ℝ^p × ℝ.
- Recall $\mathcal{M}(k)$ as all submodels of size bounded by k and set

$$\mathcal{Q} := \{ (j, M) : j \in M, M \in \mathcal{M}(k) \}.$$

• The collection of functionals is

$$\left\{\beta_{n,M}(j): q=(j,M)\in \mathcal{Q}\right\}.$$

• Hence, the number of functionals is

$$|\mathcal{Q}| = \sum_{\ell=1}^{k} \ell \binom{p}{\ell} \le \left(\frac{2ep}{k}\right)^{k} \text{ and } |\mathcal{Q}| \ge \left(\frac{p}{k}\right)^{k},$$

and so, $|\mathcal{Q}| \simeq (ep/k)^k$ and $\log(|\mathcal{Q}|) \simeq k \log(ep/k)$.

Verification of Assumptions (A1) and (A4)

For linear regression and smooth *M*-estimators, assumption (A1) was verified in Kuchibhotla et al. (2018b). The result for OLS is:

$$\max_{|M| \le k} \left\| \sqrt{n} \left(\hat{\beta}_{n,M} - \beta_{n,M} \right) - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \psi_{n,M}(Z_i) \right\|_2 = O_p \left(\frac{k \log(ep/k)}{\sqrt{n}} \right),$$

where

$$\psi_{n,M}(Z_i) := (\Sigma_n(M))^{-1} X_i(M) (Y_i - X_i^{\top}(M) \beta_M),$$

$$\Sigma_n(M) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i(M) X_i^{\top}(M)].$$

• A trivial estimator of influence function $\psi_{n,M}$ satisfying (A4) is

$$\hat{\psi}_{n,M}(Z_i) := \left(\hat{\Sigma}_n(M)\right)^{-1} X_i(M)(Y_i - \hat{\beta}_M^\top X_i(M)),$$

with $\hat{\Sigma}_n(M)$ representing the Gram matrix for model *M*.

Verification of (A3)

• Under the assumption of independence without a well-specified model, the estimator for the variance of $\sqrt{n}(\hat{\beta}_M - \beta_M)$ is given by the sandwich:

$$\frac{1}{n}\sum_{i=1}^{n}\left(\hat{\Sigma}_{n}(M)\right)^{-1}X_{i}(M)\left(Y_{i}-\hat{\beta}_{M}^{\top}X_{i}(M)\right)^{2}X_{i}^{\top}(M)\left(\hat{\Sigma}_{n}(M)\right)^{-1}.$$

 It can be proved that the sandwich estimator is uniformly close to the true asymptotic variance at the rate:

$$\sqrt{\frac{k\log(ep/k)}{n}} + \frac{(k\log(ep/k))^2}{n}.$$

• Thus the result applies if $k \log(ep/k) = o(n^{1/7})$. Similar result holds for smooth *M*-estimators based on results of Kuchibhotla et al. (2018b).

Outline

- 2 A General Framework for PoSI
- 3 Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

Construction of PoSI Confidence Regions

- The Gaussian approximation result allows for PoSI confidence regions using quantiles of max Gaussians.
- If there is no structure in Q, then a "conventional" construction can be based on the quantiles of

$$\max_{q \in \mathcal{Q}} \left| \frac{\sqrt{n}(\hat{\theta}_q - \theta_q)}{\hat{\sigma}_{n,q}} \right|$$

- This is called the "max-|t|" statistic and was used for PoSI in Berk et al. (2013) and Bachoc et al. (2016).
- BUT, in regression analysis, there is a hierarchical structure: model *M* and then covariate *j* in model *M*.
- Ignoring this structure leads to certain deficiencies of the "max-|t|" confidence regions.

July 12, 2018

24/40

Deficiencies of max-|t| Regions: Part I

• Define for any model *M*,

$$T_M := \max_{1 \le j \le |M|} \left| \frac{\sqrt{n} \left(\hat{\beta}_{n,M}(j) - \beta_{n,M}(j) \right)}{\hat{\sigma}_{n,M}(j)} \right|$$

- In this notation, $\max |t| := \max_{|M| \le k} |T_M|$.
- Suppose $M \subset M'$ are two models. Then T_M is usually smaller than $T_{M'}$. Under certain assumptions,

$$\mathbb{E}\left[T_{M}\right] \asymp \sqrt{\log |M|} \quad \text{and} \quad \mathbb{E}\left[T_{M'}\right] \asymp \sqrt{\log |M'|}.$$

• So, the maximum in the max-|t| is usually attained at the largest model implying larger confidence regions for smaller models.

Smaller Models should have Smaller Confidence Regions

Deficiencies of max-|t| Regions: Part II

 To understand the second major deficiency of max-|t| regions, consider the gram matrix

$$\hat{\Sigma}_n := \begin{bmatrix} I_{p-1} & c\mathbf{1}_{p-1} \\ c\mathbf{1}_{p-1}^\top & 1 \end{bmatrix},$$

with $c^2 < 1/(p-1)$ and where $\mathbf{1}_{p-1} = (1, 1, ..., 1)^{\top}$.

- In this setting for most submodels, the covariates are uncorrelated but the full model is highly collinear for c² ≈ 1/(p − 1).
- It was shown in Berk et al. (2013) that max-|t| ≍ √p. But if we ignore the last covariate, then max-|t| ≍ √log p.

Collinearity in a model should not affect confidence regions for another model.

Three Confidence Regions

• Recall the max-|t| for model M and standardized max-|t| as

$$T_M := \max_{1 \leq j \leq |M|} \left| rac{\sqrt{n} \left(\hat{eta}_M(j) - eta_M(j)
ight)}{\hat{\sigma}_{n,M}(j)}
ight|, ext{ and } T_M^\star := rac{T_M - \mathbb{E}[T_M]}{\sqrt{\operatorname{Var}(T_M)}}$$

• Consider the following three max statistics:

$$\begin{split} T_k^{(1)} &:= \max_{|M| \le k} \ T_M, \\ T_k^{(2)} &:= \max_{1 \le s \le k} \left(\frac{\max_{|M| = s} T_M^\star - E_s}{SD_s} \right), \text{ where } E_s := \mathbb{E} \left[\max_{|M| = s} T_M^\star \right], \\ T_k^{(3)} &:= \max_{1 \le s \le k} \left(\frac{\max_{|M| \le s} T_M^\star - E_s^\star}{SD_s^\star} \right), \text{ where } E_s^\star := \mathbb{E} \left[\max_{|M| \le s} T_M^\star \right]. \end{split}$$

The quantities SD_s and SD_s^* are defined similarly to E_s and E_s^* .

Three Confidence Regions Contd.

• The confidence regions (rectangles) are given by

$$\begin{split} \hat{\mathcal{R}}_{n,M}^{(1)} &:= \left\{ \theta : \ T_M(\theta) \le \mathcal{K}_{\alpha}^{(1)} \right\}, \ T_M(\theta) := \max_{j \in M} \left| \frac{\sqrt{n}(\hat{\beta}_M(j) - \theta(j))}{\hat{\sigma}_{n,M}(j)} \right|, \\ \hat{\mathcal{R}}_{n,M}^{(2)} &:= \left\{ \theta : \ T_M(\theta) \le \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(E_s + SD_s\mathcal{K}_{\alpha}^{(2)}) \right\}, \\ \hat{\mathcal{R}}_{n,M}^{(3)} &:= \left\{ \theta : \ T_M(\theta) \le \mathbb{E}[T_M] + \sqrt{\operatorname{Var}(T_M)}(E_s^* + SD_s^*\mathcal{K}_{\alpha}^{(3)}) \right\}. \end{split}$$

Here $\mathcal{K}_{\alpha}^{(j)}$ denote the quantiles of $\mathcal{T}_{k}^{(j)}$ respectively for j = 1, 2, 3.

- The regions $\hat{\mathcal{R}}_{n,M}^{(j)}$, j = 2, 3 provide model dependent scaling and so give shorter confidence regions for smaller models.
- Note that all these regions are tight: there exists a model-selection procedure for which the confidence regions have (asymptotically) exact coverage of 1α .

Some Comments

- The three confidence regions provide asymptotically valid post-selection inference.
- Because of the model-dependent scaling for the last two, they are less conservative than the max-|t| confidence regions.
- In most applications with smaller chosen models, the last two confidence regions turn out to be much smaller than the max-|t| confidence regions.
- Bootstrapping $T_k^{(j)}$, j = 2, 3 requires estimation of first two moments of maximums and the results of Banerjee et al. (2018) imply that consistent estimation of moments is possible by Gaussian approximation.
- The three maximum-statistics listed here are not the only options and one can get very creative in designing others.

• (10) • (10)

Outline

- 2 A General Framework for PoSI
- 3 Illustration with OLS
- 4 Three PoSI Confidence Regions

5 Numericals

6 Summary

A (10) A (10)

Boston Housing Data

Boston housing dataset contains data on n = 506 median value of a house along with 13 predictors like crime rate, nitric oxide concentration, number of rooms, percent low status population.

The confidence regions for model $M \in \mathcal{M}(k)$ are given by

$$|T_M(\theta)| \leq \begin{cases} \mathcal{K}_{\alpha}^{(1)}, \\ \mathcal{C}_M^{(2)} := \mathbb{E}[T_M] + \sqrt{\mathsf{Var}(T_M)}(\mathcal{E}_{\mathcal{S}} + \mathcal{SD}_{\mathcal{S}}\mathcal{K}_{\alpha}^{(2)}), \\ \mathcal{C}_M^{(3)} := \mathbb{E}[T_M] + \sqrt{\mathsf{Var}(T_M)}(\mathcal{E}_{\mathcal{S}}^{\star} + \mathcal{SD}_{\mathcal{S}}^{\star}\mathcal{K}_{\alpha}^{(3)}). \end{cases}$$

We estimate the right hand side quantities using multiplier bootstrap.

To understand how small/wide the last two confidence regions are, we compute:

$$\operatorname{Summary}\left(\frac{C_{M}^{(2)}}{K_{\alpha}^{(1)}}: \ M \in \mathcal{M}(k)\right) \text{ and } \operatorname{Summary}\left(\frac{C_{M}^{(3)}}{K_{\alpha}^{(1)}}: \ M \in \mathcal{M}(k)\right).$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boston Housing Data Contd.

Recall that Boston housing data has 14 predictors including the intercept. $1 \le k \le 14$ represents the maximum model size allowed and j = 2, 3 represents two confidence regions. Here we consider two cases k = 6 and k = 14.

Table: Comparison of Constants in $\hat{\mathcal{R}}_{n,M}^{(2)}$ and $\hat{\mathcal{R}}_{n,M}^{(3)}$ to max-|t| constant.

$Quantiles \rightarrow$		Min.	5%	25%	50%	Mean	75%	95%	Max.
<i>k</i> = 6	<i>j</i> = 2	0.702	0.978	1.037	1.060	1.052	1.077	1.098	1.140
	<i>j</i> = 3	0.692	0.980	1.047	1.072	1.062	1.090	1.112	1.155
<i>k</i> = 14	<i>j</i> = 2	0.718	0.996	1.044	1.065	1.060	1.083	1.105	1.148
	<i>j</i> = 3	0.678	0.999	1.050	1.070	1.064	1.086	1.108	1.147

About 30% gain with about 15% loss over all models!

For $\geq 90\%$ of models, the confidence regions are wider.

Arun Kumar, PoSI Group (Wharton School)

Asymptotic Uniform Linear Rep.

Outline

- 2 A General Framework for PoSI
- 3 Illustration with OLS
- 4 Three PoSI Confidence Regions
- 5 Numericals

A (10) > A (10) > A (10)

Conclusions

- We have provided a unified framework for post-selection inference allowing for increasing number of models.
- We have verified the assumption for OLS and Smooth *M*-estimators including GLM's.
- Based on the Gaussian approximation results, we have constructed and implemented three different PoSI confidence regions.
- All three confidence regions are asymptotically tight. This implies that no one can uniformly dominate the other.
- An interesting question of what kind of maximum statistic to consider is raised.
- Efficienct algorithms and detailed simulation studies are under progress.

Arun Kumar, PoSI Group (Wharton School)

References

- Bachoc, F., Preinerstorfer, D., and Steinberger, L. (2016). Uniformly valid confidence intervals post-model-selection. arxiv.org/abs/1611.01043.
- [2] Banerjee, D., Kuchibhotta, A. K., and Mukherjee, S. (2018). Cramér-type large deviation and non-uniform central limit theorems in high dimensions. arXiv.org/abs/1806.06153.
- [3] Belloni, A., Chernozhukov, V., Chetverikov, D., Hansen, C., Kato, K., et al. (2018). High-dimensional econometrics and regularized gmm. Technical report. Centre for Microdata Methods and Practice. Institute for Fiscal Studies.
- [4] Berk, R., Brown, L. D., Buja, A., Zhang, K., Zhao, L. (2013) Valid post-selection inference. Ann. Statist. 41, no. 2, 802–837.
- [5] Kuchibhotla, Brown, Buja, Berk, Zhao, George (2018a) Valid Post-selection Inference in Assumption-lean Linear Regression. arXiv.org/abs/1806.04119.
- [6] Kuchibhotta, Brown, Buja, Zhao, George (2018b) A Model Free Perspective for Linear Regression: Uniform-in-model Bounds for Post Selection Inference. arXiv.org/abs/1802.05801.
- Kuchibhotla, Brown, Buja, Zhao, George (2018+) A Note on Post-selection Inference for M-estimators. in preparation.

Thank You Questions?

Arun Kumar, PoSI Group (Wharton School)

Asymptotic Uniform Linear Rep.

July 12, 2018 35 / 40

・ロト ・ 四ト ・ ヨト ・ ヨト

Notation for a General Result

Suppose (X_i, Y_i) be *n* random vectors and for M ⊆ {1, 2, ..., p}, define the estimator

$$\hat{\beta}_{n,M} := \underset{\theta \in \mathbb{R}^{|M|}}{\operatorname{arg\,min}} \ \frac{1}{n} \sum_{i=1}^{n} L\left(Y_i, X_i^{\top}(M)\theta\right),$$

and the corresponding target

$$\beta_{n,M} := \underset{\theta \in \mathbb{R}^{|M|}}{\arg \min} \ \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[L \left(Y_i, X_i^{\top}(M) \theta \right) \right].$$

Here $L(\cdot, \cdot)$ is a loss function convex in the second argument.

 GLM's are special case with L(y, t) = L(y, t) = ψ(t) - yt; logistic: ψ(u) = log(1 + exp(u)) and Poisson: ψ(u) = exp(u)

Notation Contd.

Set

$$L'(y, u) := \frac{\partial}{\partial t} L(y, t) \Big|_{t=u}$$
 and $L''(y, u) := \frac{\partial}{\partial t} L'(y, t) \Big|_{t=u}$.

Define

$$C_+(y,u) := \sup_{|s-t|\leq u} \frac{L''(y,s)}{L''(y,t)} \quad (\geq 1).$$

For logistic and Poisson, $C_+(y, u) \le \exp(3u)$ for all y.

• Finally, define the estimating function for model *M* as

$$\begin{split} \hat{\mathcal{Z}}_{n,M}(\theta) &:= \frac{1}{n} \sum_{i=1}^{n} L'\left(Y_i, X_i^{\top}(M)\theta\right) X_i(M) \in \mathbb{R}^{|M|} \\ \hat{\mathcal{J}}_{n,M}(\theta) &:= \frac{1}{n} \sum_{i=1}^{n} L''\left(Y_i, X_i^{\top}(M)\theta\right) X_i(M) X_i^{\top}(M) \in \mathbb{R}^{|M| \times |M|}. \end{split}$$

4 A N

A Main Result: Deterministic Version

Theorem

For any $n, k \ge 1$ and for $M \subseteq \{1, 2, \dots, p\}$, set

$$\delta_{n,M} := \left\| \left[\hat{\mathcal{J}}_{n,M}(\beta_{n,M}) \right]^{-1} \hat{\mathcal{Z}}_{n,M}(\beta_{n,M}) \right\|_{2},$$

and the event

$$\mathcal{E}_{k,n} := \left\{ \max_{|\boldsymbol{M}| \leq k} \max_{1 \leq i \leq n} C_{+}(\boldsymbol{Y}_{i}, 2 \|\boldsymbol{X}_{i}(\boldsymbol{M})\|_{2} \,\delta_{n,M}) \leq \frac{3}{2} \right\}.$$

On the event $\mathcal{E}_{k,n}$, simultaneously for all models $|M| \leq k$, there exists a unique $\hat{\beta}_{n,M} \in \mathbb{R}^{|M|}$ satisfying

$$\hat{\mathcal{Z}}_{n,M}(\hat{\beta}_{n,M}) = 0 \quad and \quad \frac{1}{2}\delta_{n,M} \leq \left\|\hat{\beta}_{n,M} - \beta_{n,M}\right\|_2 \leq 2\delta_{n,M}.$$

Arun Kumar, PoSI Group (Wharton School)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

On the event $\mathcal{E}_{k,n}$, simultaneously for all models $|M| \leq k$, the estimators satisfy

$$\left\|\hat{\beta}_{n,M}-\beta_{n,M}+\left[\mathcal{J}_{n,M}(\beta_{n,M})\right]^{-1}\hat{\mathcal{Z}}_{n,M}(\beta_{n,M})\right\|_{2}\leq\Delta_{n,M}\delta_{n,M},$$

where

$$\mathcal{J}_{n,M}(\theta) := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \left[L'' \left(Y_i, X_i^{\top}(M) \theta \right) X_i(M) X_i^{\top}(M) \right]$$

and

$$\Delta_{n,M} = \frac{\left\|\hat{\mathcal{J}}_{n,M}(\beta_{n,M}) - \mathcal{J}_{n,M}(\beta_{n,M})\right\|_{op}}{\lambda_{\min}\left(\mathcal{J}_{n,M}(\beta_{n,M})\right)} + \max_{i} C_{+}(Y_{i}, 2 \|X_{i}(M)\|_{2} \delta_{n,M}) - 1$$

Note that independence of observations is NOT required.

Arun Kumar, PoSI Group (Wharton School)

A 3 >

Application

• For generalized linear models (in the canonical form),

1

$$L(\mathbf{y},t)=\psi(t)-\mathbf{y}t,$$

for a convex function $\psi(\cdot)$.

• In logistic and Poisson regression, the event $\mathcal{E}_{k,n}$ becomes

$$\max_{|M| \le k} \max_{1 \le i \le n} \|X_i(M)\|_2 \,\delta_{n,M} \le \frac{\log 2}{6}.\tag{1}$$

- No independence is required.
- Inequality (1) holds as long as $k = o(\sqrt{n/\log p})$ under the tail assumption and "weak" dependence.
- The proof is based on the Banach fixed point theorem and also applies to Cox proportional hazards model.