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Traditional inference framework



Inference: confidence intervals

⋆ The construction of confidence sets for functionals is a standard

problem in statistics.

⋆ Suppose θ(P),P ∈ P is a functional of interest, for example, the mean

of P or a coefficient in a regression model.

⋆ Traditional inference methods such as Wald or resampling (e.g.

bootstrap or subsampling) proceed as follows.

⋆ Assuming the existence of an estimator θ̂n based on n observations such

that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

r̂n
, θ̂n −

q̂α/2
r̂n

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L, and r̂n is an estimate of rn, if unknown.
3



Example: Linear Regression (fixed d)

⋆ Suppose (X ,Y ) ∈ Rd+1 is a random vector from a distribution P and

we are interested in the projection parameter θ0 = θ(P) defined

θ(P) = argmin
θ∈Rd

EP [(Y − X⊤θ)2].

⋆ Because of unconstrained optimization, θ(P) is also the solution to the

equation

EP [X (Y − X⊤θ)] = 0.

⋆ Using IID data (Xi ,Yi ), 1 ≤ i ≤ n, θ(P) can be estimated using

θ̂n = argmin
θ∈Rd

n∑
i=1

(Yi − X⊤
i θ)

2.

⋆ For a fixed d , assuming the invertibility of Σ = E[XX⊤], as n → ∞,

n1/2(θ̂n − θ(P))
d→ N(0,Σ−1VΣ−1),

where V = E[XX⊤(Y − X⊤θ(P))2]; no linear model or Gaussianity.
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Wald Inference: Linear Regression (fixed d)

⋆ The asymptotic variance can be estimated as Σ̂−1V̂ Σ̂−1.

⋆ For any vector c ∈ Rd , the Wald confidence interval for c⊤θ(P) can be

obtained as

C̃I
Wald

n,α (c) :=

c⊤θ̂n ± zα/2

(
c⊤Σ̂−1V̂ Σ̂−1c

n

)1/2
 .

⋆ Again with d fixed, as n → ∞, this confidence interval has an

asymptotic coverage of 1− α.

⋆ This nicety fails when dimensions grow rapidly or when constraints are

placed on the projection parameter.
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Failure of traditional inference:

Increasing dimension



Asymptotics: Increasing dimension

⋆ With some algebraic manipulation, the OLS estimator satisfies

θ̂n − θ(P) =
1

n

n∑
i=1

Σ̂−1Xi (Yi − X⊤
i θ(P)).

⋆ Asymptotic normality is claimed, for fixed d , by replacing Σ̂−1 with Σ−1

with “negligible” error:

θ̂n − θ(P) =
1

n

n∑
i=1

Σ−1Xi (Yi − X⊤
i θ(P))

+
1

n

n∑
i=1

(Σ̂−1 − Σ−1)Xi (Yi − X⊤
i θ(P)).

⋆ The first term is mean zero and responsible for asymptotic normality,

and for fixed d , the second term is negligible compared to the first.

⋆ Keeping track of dimension dependence, the first term is of order 1/
√
n

and the second is of order d/n, along any direction.
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Asymptotics: Increasing dimension

⋆ If d = õ(n1/2), then

n1/2(θ̂n − θ(P))
d
≈ N(0,Σ−1VΣ−1).

The asymptotic variance can be consistently estimated as if d were

fixed. (Here õ hides poly log n factors.)

⋆ If d = õ(n2/3), then

n1/2(θ̂n − θ(P)− B(P))
d
≈ N(0,Σ−1VΣ−1),

where

B(P) = − 1

n2

n∑
i=1

Σ−1Xi (Yi − X⊤
i θ(P))∥Xi∥2Σ−1 .

⋆ Unsurprisingly, B(P) = op(n
−1/2) if E[Y |X ] = X⊤θ(P) and d = o(n).
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Inference with increasing dimension

⋆ This implies that, even if the bias is known, we have asymptotic

normality only when d ≪ n2/3.

⋆ Chang, Kuchibhotla, and Rinaldo (2023, ArXiv:2307.00795) proposed a

plug-in bias estimator B̂n so that

n1/2(θ̂n − B̂n − θ(P))
d
≈ N(0,Σ−1VΣ−1), whenever d = õ(n2/3),

along any direction. They also proved the consistency of the classical

variance estimator.

⋆ Lin et al. (2024, ArXiv:2411.02909) proposed a jackknife estimator with

similar properties for a general Z -estimator under a restrictive compact

parameter space assumption.

⋆ Hence, traditional Wald inference is only valid for d = õ(n2/3). We do

not know of an asymptotically normal estimator when d ≫ n2/3.
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Failure of traditional inference:

Constraints



With constraints

⋆ The situation is much worse with constraints, even if d is fixed as

n → ∞.

⋆ Suppose

θ(P) = argmin
θ∈Θ

E[(Y − X⊤θ)2],

for some set Θ ⊆ Rd .

⋆ The limiting distribution of the sample estimator θ̂n is highly dependent

on the regularity of θ(P) with respect to Θ (e.g., equality of different

notions of tangent cones).

⋆ The limit could be a projected Gaussian; see Pflug (1995), Geyer

(1994), and Shapiro (2000).
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Examples with constraints

⋆ Examples with constraints are relevant in practice.

⋆ Sparsity inducing least squares:

Θ = {θ ∈ Rd : ∥θ∥0 ≤ k},

or

Θ = {θ ∈ Rd : ∥θ∥1 ≤ t},
or

Θ =

θ ∈ Rd :
k∑

j=1

∥θGj∥2 ≤ t

 .

⋆ Shape inducing least squares:

Θ = {θ ∈ Rd : θ ⪰ 0},

or

Θ = {θ ∈ Rd : ∆1θ ⪰ 0},
where ∆1θ yields the first order differences of θ; e.g., (∆1θ)1 = θ2 − θ1.
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Approach 1: Risk inversion for

M-estimationa

aJoint work with Kenta Takatsu (arXiv:2501.07772)



The Setting

⋆ For any distribution P ∈ P, define the functional of interest

θ(P) := argmin
θ∈Θ

MP(θ), MP(θ) := EP [m(Z ; θ)].

Here Θ can be infinite-dimensional and θ(P) can be a set.

⋆ Clearly, for any estimator θ̃ ∈ Θ,

θ(P) ⊆
{
θ ∈ Θ : M(θ)−M(θ̃) ≤ 0

}
.

⋆ Of course, the right hand set is not computable based on the data.

However, we can construct two sets on the basis of this intuition.

⋆ Weak miscoverage:

MC(ĈIn,α) = sup
θ∗∈θ(P)

PP

(
θ∗ /∈ ĈIn,α

)
.
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Confidence Sets

⋆ Randomly split {1, 2, . . . , 2n} into two equal parts I1 and I2.

⋆ Compute any estimator θ̃1 using {Zi : i ∈ I1}.

⋆ On the second half, set M̂n(θ) = n−1
∑

i∈I2
m(Zi ; θ) and compute

ĈI
†
n :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̃1) ≤ 0

}
,

ĈIn,α :=
{
θ ∈ Θ : M̂n(θ)− M̂n(θ̃1) ≤

zα/2

n1/2
σ̂(θ)

}
,

(1)

where σ̂(θ) is the standard deviation of m(Zi ; θ)−m(Zi ; θ̃1), i ∈ I2.

⋆ Clearly,

ĈI
†
n ⊆ ĈIn,α for any α ∈ (0, 1), n ≥ 1.

⋆ This is essentially risk inversion and is an old idea.
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History

Statistics Operations Research

(1) Without sample splitting

Stein (1981) Pflug (1991, 1995, 2003)

Li (1981) Vogel (2008)

Beran (1996) Vogel and Seeger (2017)

Geyer (1996) Guigues et al. (2017)

Beran and Dumbgen (1998)

(2) With sample splitting

Robins and van der Vaart (2006)

Hoffmann and Nickl (2011)

Carpentier (2013)

Chakravarti et al. (2019)

Kim and Ramdas (2024)

Park et al. (2023)
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Validity

⋆ For any θ̃1, we have

MC(ĈIn,α) ≤ MC(ĈI
†
n) ≤ sup

θ∗∈θ(P)

E

[
σ2(θ̃1)

σ2(θ̃1) + nC2(θ̃1)

]
,

where

σ2(θ′) := VarP(m(θ∗,Z )−m(θ′,Z )),

C(θ′) := E[m(θ,Z )]−min
θ∈Θ

E[m(θ,Z )].

⋆ Note that if θ̃1 is inconsistent for θ(P), i.e., dist(θ̃1, θ(P)) ̸= op(1) as

n → ∞, then

MC(ĈIn,α) ≤ MC(ĈI
†
n) → 0, as n → ∞.

⋆ In fact, if σ2(θ′) ≤ ∥θ∗ − θ′∥2η and C(θ′) ≥ ∥θ∗ − θ′∥1+β , then

MC(ĈI
†
n) ≤ sup

θ∗∈θ(P)

E
[(

1 + n∥θ̃1 − θ∗∥2+2β−2η
)−1

]
.
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Validity

⋆ Hence, ĈI
†
n is an asymptotically uniformly conservative confidence set if

θ̃1 converges at a slow enough rate to θ(P).

⋆ On the other hand, ĈIn,α also satisfies

MC(ĈIn,α) ≤ α +
1√
n
× max

θ∗∈θ(P)
EP

[
|m(Z ; θ∗)−m(Z ; θ̃1)|3

σ3(θ̃1)

]
.

⋆ This implies asymptotically 1− α coverage if the Lyapunov ratio is

bounded. This boundedness holds with the consistency of θ̃1 for many

“smooth” loss functions.

⋆ Note that if the loss function is bounded, then one can simply use a

concentration inequality instead of the CLT to get a finite-sample valid

confidence set. This, for example, holds for Manski’s discrete choice

model.

⋆ None of these guarantees depend on the dimension/complexity of the

parameter space Θ. 15



Diameter

⋆ The diameter of the confidence set depends on the size of θ(P), the

complexity of Θ, and the consistency of θ̃1.

⋆ Because θ̃1 ∈ ĈI
†
n and the confidence set ĈIn,α is asymptotically valid,

we get

diam(ĈIn,α) ≥ diam(ĈI
†
n) ≥ max

{
sup

θ∗∈θ(P)

∥θ∗ − θ̃1∥, diam(θ(P))

}
,

with a positive probability.

⋆ Hence, the diameter cannot converge to zero unless θ(P) is a singleton

and θ̃1 is consistent for θ(P).

⋆ Furthermore, we also have

θ̂2 ∈ ĈI
†
n, θ̂2 := argmin

θ∈Θ

∑
i∈I2

m(Zi ; θ).

The suboptimality of the M-estimator implies the suboptimality of the

confidence set. 16



Diameter

If C(θ′) ≥ ∥θ∗ − θ′∥1+β for all θ′ ∈ Θ, we get

diam(ĈIn,α) = Op

(
r1/(1+β)
n + s1/(1+β)

n

)
,

where

sn = C(θ̃1) + n−1/2∥m(Z ; θ(P))−m(Z ; θ̃1)∥2,

and rn is such that

ϕn(r
2/(1+β)
n ) ≍ n1/2r2n ,

for

ϕn(δ) ≥ E

[
sup

∥θ−θ(P)∥≤δ

|Gn[m(Z ; θ)−m(Z ; θ(P))]|

]
,

ϕn(δ) ≥ sup
∥θ−θ(P)∥≤δ

∥m(Z ; θ)−m(Z ; θ(P))∥2.

See Theorem 8 of Takatsu and Kuchibhotla (2025, arXiv:2501.07772v3)

for details.
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Example: Manski’s Discrete Choice Model

⋆ Suppose Zi = (Xi ,Yi ) come from Yi = sgn(θ(P)⊤Xi + ξi ) for some

noise ξi that satisfies Med(ξ|X ) = 0.

⋆ Assume the margin condition holds:

PP (|η(X )− 1/2| ≤ t) ≲ t1/β for all t < t∗,

where η(X ) = P(Y = 1|X ).

⋆ If, for all θ ∈ Sd−1,

c1∥θ − θP∥2 ≤ PP

(
sgn(θ⊤X ) ̸= sgn(θ⊤P X )

)
,

then

diam(ĈIn,α) = Op(1)

(
d log(n/d)

n

)1/(1+2β)

.

This is the minimax rate.
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Approach 2: Self-normalization

for Z-estimationa

aJoint work with Woonyoung Chang (arXiv:2407.12278)



Z-estimation (without constraints)

⋆ Suppose θ(P) solves the equation

EP [ψ(Z ; θ(P))] = 0.

Hence, u⊤ψ(Z ; θ(P)) is a mean zero random variable for any u ∈ Rd .

⋆ This implies that

CIn,α(u) :=

θ ∈ Rd :
|
∑

i∈I2
u⊤ψ(Zi ; θ)|√∑

i∈I2
(u⊤ψ(Zi ; θ))2

≤ zα/2

 ,

is an asymptotically valid (1− α) confidence set. In fact, for all u ∈ Rd

and n ≥ 1,

sup
θ∗∈θ(P)

P(θ∗ /∈ CIn,α(u)) ≤ α +
1√
n
× sup

θ∗∈θ(P)

EP [|u⊤ψ(Z ; θ∗)|3]
(EP [(u⊤ψ(Z ; θ∗)2])3/2

.

⋆ This proves dimension-agnostic validity guarantee and holds for any

Z -estimation problem. Note: no variance estimation, no bootstrap, no

rate of convergence are needed. 19



Without constraints

⋆ Although valid, this confidence set is not practically viable because it is

unbounded in all but one direction. This is useful for inference for linear

contrasts.

⋆ This comes from the fact that EP [u
⊤ψ(Z ; θ)] = 0 does not imply

EP [ψ(Z ; θ)] = 0.

⋆ Alternatively, vectors u that depend on θ yield bounded confidence sets.

Formally,

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑

i∈I2
(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑

i∈I2
((θ̃1 − θ)⊤ψ(Zi ; θ))2

≤ zα/2

 ,

is also an asymptotically valid (1− α) confidence set. Here, θ̃1 is any

estimator independent of Z1, . . . ,Zn.

⋆ The validity does not depend on the consistency of θ̃1, but the diameter

depends on it.
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Without constraints

⋆ In the context of linear regression, this confidence set is easy to

compute because it is a quadratic inequality.

⋆ It is clear that

θ̃1, θ̂n ∈ ĈI
∗
n,α, where

∑
i∈I2

ψ(Zi ; θ̂n) = 0.

Hence, the diameter of the confidence set cannot shrink faster than the

rate of convergence of the Z -estimator.

⋆ Chang and Kuchibhotla (2025) show that, for linear regression,

diam(ĈI
∗
n,α) = Õp

(√
d/n

)
.

Similar results hold for generalized linear models, including logistic

regression. For GLMs, the estimation function is

ψ(Z ; θ) = X (Y − ℓ′(X⊤θ)).
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Linear Contrasts

⋆ The advantage of these sets, in contrast to risk inversion, is in inference

for linear contrasts.

⋆ In linear regression, for any η ∈ Rd solving

E[a⊤ψ(Z ; η)] = 0 where a = Σ−1c , ψ(Z ; η) = X (Y − X⊤η),

we have c⊤η = c⊤θ(P).

⋆ Hence, we propose the confidence set

c⊤
(
ĈI

∗
n,α/n ∩ CIn,α(Σ̃

−1
1 c)

)
,

for c⊤θ(P). This has dimension-agnostic validity and, moreover, its

diameter scales as n−1/2 + d/n.
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With constraints

⋆ The approach can be seamlessly extended to the case with constraints.

Recall that if Θ is a closed convex set and θ̃1 ∈ Θ is some initial

estimator, then

(θ̃1 − θ(P))EP [X (Y − X⊤θ(P))] ≤ 0.

⋆ Hence, a valid confidence set for θ(P) is

ĈI
∗
n,α :=

θ ∈ Θ :

∑
i∈I2

(θ̃1 − θ)⊤ψ(Zi ; θ)√∑
i∈I2

((θ̃1 − θ)⊤ψ(Zi ; θ))2
≤ zα/2

 ,

⋆ Once again, the validity is agnostic to the dimension d . The study of

the diameter is in progress.

⋆ Construction of a confidence set for c⊤θ(P) is unresolved.
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Comment: Assumptions

Set Σ = E[XX⊤] and V = E[XX⊤(Y − X⊤θ0)
2].

(LM1) There exist qx ≥ 8, qy ,Kx ,Ky ≥ 1 such that

sup
u∈Sd−1

E[|u⊤Σ−1/2X |qx ] ≤ K qx
x ,

and

E[|Y − X⊤θ(P)|qy ] ≤ K
qy
y .

Moreover, qxy := (1/qx + 1/qy )
−1 ≥ 4,

(LM2) There exist positive constants λΣ, λΣ, λV , and λV such that

0 < λΣ ≤ λmin(Σ) ≤ λmax(Σ) ≤ λΣ <∞

and

0 < λV ≤ λmin(V ).
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Comment: computation

⋆ The proposed confidence set is

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑

i∈I2
(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑

i∈I2
((θ̃1 − θ)⊤ψ(Zi ; θ))2

≤ zα/2

 ,

⋆ This is analytically and computationally intractable for general ψ.

Tractability can be improved using the initial estimator θ̃1.

⋆ Define the alternative confidence set

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑

i∈I2
(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑

i∈I2
((θ̃1 − θ)⊤ψ(Zi ; θ̃1))2

≤ zα/2

 ,

⋆ This is asymptotically valid if θ(P) is singleton, θ̃1 is consistent for

θ(P), and θ 7→ E[(u⊤ψ(Z ; θ))2] is continuous in θ.
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Conclusions



Conclusions

⋆ Construction of valid confidence sets can be difficult even for seemingly

innocuous functionals.

⋆ We proposed two confidence sets for the M- and Z-estimation problems.

⋆ For the linear regression problem, our confidence sets are valid

regardless of dimension and have a minimax diameter of
√
d/n.

⋆ Our proposal can be seamlessly extended to problems with constraints

for which asymptotic limit theory is still unavailable.

⋆ For linear contrasts (one-dimensional functionals), our self-normalization

confidence set has a diameter of order n−1/2 + d/n. In contrast, our

debiasing approach yields a confidence interval with a width of n−1/2

whenever d = o(n2/3).

⋆ Characterizing the minimax width of confidence sets for linear contrasts

is of interest.
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