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Motivation and Examples



Inference: confidence intervals

⋆ Statistical inference is the cornerstone of statistics and is a necessary

ingredient in any rigorous scientific study.

⋆ Suppose we have a (real-valued) functional θ(P),P ∈ P, e.g., the mean

of P or a coefficient in a regression model.

⋆ Traditional inference methods such as Wald or resampling (e.g.

bootstrap or subsampling) proceed as follows.

⋆ Assuming the existence of an estimator θ̂n based on n observations such

that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

r̂n
, θ̂n +

q̂α/2
r̂n

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L, and r̂n is an estimate of rn, if unknown.
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Limitations of Traditional Inference

⋆ Even with asymptotic normality, estimation of asymptotic variance can

be difficult.

– Stochastic Gradient Descent

– Quantile Regression

⋆ The rate of convergence of the estimator can depend on the underlying

data generating process.

– Quantile Regression

– Monotone Regression

⋆ The limiting distribution may be intractable, and the estimator is

unstable.

– Linear Regression

– Manski’s discrete choice model

– Monotone regression

⋆ Finally, traditional methods can be computationally expensive.
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Motivating Example 1: Linear Regression

⋆ Suppose (Xi ,Yi ), 1 ≤ i ≤ n are IID random vectors with Xi ∈ Rd .

Consider

θ(P) := argmin
θ∈Rd

E[|Y − X⊤θ|2].

⋆ The OLS estimator θ̂n satisfies

∥θ̂n − θ(P)∥ = Op(
√
d/n), if d = o(n),

but for some matrices Σ,V ,

n1/2(θ̂n − θ(P))
d
≈ N(0,Σ−1VΣ−1), only if d = o(n1/2).

This implies the validity of traditional inference if d = o(n1/2).

⋆ Most of the results and methods fail if d ≫ n1/2, because

n1/2(c⊤θ̂n − c⊤θ(P))
p→ ∞.

⋆ It is possible to construct a n1/2-consistent estimator if d = o(n2/3);

Chang, Kuchibhotla, and Rinaldo (2023).
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Motivating Exampe 2: Stochastic Gradient Descent

⋆ Suppose

θ(P) := argmin
θ∈Θ

EP [m(θ,Z )].

⋆ Consider the SGD iterates:

θ(t) = θ(t−1) − ηt∇m(θ(t−1),Zt).

⋆ Polyak and Juditsky proved that

n1/2(θn − θ(P))
d→ N(0,V (P)),

for some variance matrix V (P) that depends on P, θ(P), and some

derivatives of m.

⋆ In batch settings, estimating V (P) is not considered hard. But with a

computationally efficient algorithm like SGD, it is difficult.

⋆ If dimension is “large” compared to n, then no limiting distribution

result is available, in general.
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Motivating Example 3: Quantile Regression

⋆ Suppose Yi = X⊤
i θ0 + ξi are IID such that Med(ξi |Xi ) = 0.

⋆ If FX (t) = P(ξ ≤ t|X ), and for some γ > 0, (degree of flatness at 0)

lim
t→0

|FX (t)− FX (0)|
|t|γ

= AX ,

then with W ∼ N(0,Σ),

n1/(2γ)(θ̂n − θ0)
d→ argmin

u∈Rd

u⊤W +
2

γ + 1
E[AX |u⊤X |γ+1].

⋆ If γ = 1, then AX = fξ(0|X ) and this reduces to the usual asymptotic

normality result. In this case, traditional inference is valid.

⋆ The rate of convergence depends on the (unknown) smoothness of the

conditional CDF around 0.
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Motivating Example 4: Manski’s Discrete Choice Model

⋆ Suppose (Xi ,Yi ), 1 ≤ i ≤ n are IID random vectors with Xi ∈ Rd ,

Yi ∈ {0, 1}, from Manski’s model:

Yi = 1{X⊤
i θ(P) + ξi ≥ 0} with Median(ξi |Xi ) = 0.

⋆ This is a semiparametric generlization of logistic regression and is used

in Econometrics for discrete choice models.

⋆ Manski’s estimator of θ(P) is

θ̂n := argmin
θ∈Sd−1

n∑
i=1

(Yi − 1/2)1{X⊤
i θ ≥ 0}.

⋆ If the conditional density of ξ given X exists and is smooth, then

n1/3(θ̂n − θ(P))
d→ H × argmin

s∈Rd−1

G(s) + s⊤Vs

2
,

for some mean zero Gaussian process G(·) and some matrix V .

⋆ Wald does not apply, bootstrap is inconsistent, and subsampling is

unreliable. 8



Motivating Example 5: Monotone Regression

⋆ Consider (Xi ,Yi ), 1 ≤ i ≤ n from the model Yi = f0(Xi ) + ξi where f0(·)
is non-decreasing.

⋆ The LSE is given by

f̂n = argmin
f : non−decreasing

n∑
i=1

(Yi − f (Xi ))
2.

⋆ If for some γ > 0, (degree of flatness at x0)

lim
t→0

|f0(x0 + t)− f0(x0)|
|t|γ

= A,

then

nγ/(2γ+1)(f̂n(x0)− f0(x0))
d→ Bx0,γCγ ,

where Bx0,γ is a constant depending on the density of X and variance of

ξ at x0, and Cγ is related to a drifted two-sided Brownian motion.

⋆ Wald is not applicable, bootstrap is inconsistent, and subsampling is

unreliable.
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Inference I: COSI Framework



Inference I: COSI (COnfidence sets using Scale Invariance)

Figure 1: Illustration of Nested Structure of Limiting Distributions
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Inference I: COSI Framework

⋆ Many estimators have a limiting distribution that meets a

scale-invariant property.

⋆ A property P is called scale invariant, if for every random variable W

satisfying P, cW also satisfies P for any c ≥ 0.

⋆ Here are a few examples:

Name Definition

Central Symmetry W
d
= −W

Angular Symmetry W /∥W ∥ d
= −W /∥W ∥

Unimodality at 0 W
d
= UZ , U ⊥ Z

Normal with mean zero W ∼ N(0,Σ)

⋆ Zero is the “center” for any distribution satisfying a scale invariant

property.

⋆ If rn(θ̂n − θ(P))
d→ L and L satisfies some scale-invariant property, then

θ̂n − θ(P) also approximately satisfies the scale-invariant property.
11



The COSI Algorithm

⋆ Suppose we have n IID observations Z1, . . . ,Zn.

⋆ Randomly split into B batches of approximately equal size and compute

the estimator on each batch. We get
rn/B(θ̂

(1) − θ(P))
...

rn/B(θ̂
(B) − θ(P))

 d→

L(1)

...

L(B)

 .

⋆ Note that L(1), . . . , L(B) are IID and if the limiting distribution satisfies a

scale invariant property P, then we can think of θ̂(j) − θ(P), 1 ≤ j ≤ B

as IID observations from a distribution that satisfies P approximately.

⋆ Return the confidence set

ĈIn,α :=
{
θ : test for P using {θ̂(j) − θ}Bj=1 is not rejected

}
,

⋆ Specific scenarios for univariate functionals to follow.
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Scenario I: Zero median

⋆ For θ(P) ∈ R, consider the scale invariant property of zero median. A

random variable W ∈ R has zero median if

min {P(W ≥ 0), P(W ≤ 0)} ≥ 1/2.

⋆ Asymptotic zero median is same as “estimator is equally likely to

over-estimate and under-estimate θ(P).”

⋆ A classical test for zero median is the sign test yielding the COSI

confidence interval

ĈI
GHulC

n,α :=
[
θ̂(⌊B/2⌋−cB,α), θ̂(⌈B/2⌉+cB,α+1)

]
, if B ≥ log2(2/α).

Here cB,α is the (1− α/2)-th quantile of Bin(B, 1/2)− ⌊B/2⌋.

⋆ This is a generalization of the HulC confidence intervals of Kuchibhotla

et al. (2024, JRSS-B), studied in Paul and Kuchibhotla (2024).
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Scenario II: Symmetry around zero

⋆ For θ(P) ∈ R, consider the scale invariant property of symmetry around

zero. A random variable W ∈ R is symmetric around zero if

W
d
= −W or equivalently |W | ⊥ sign(W ).

⋆ Next to normality, this is the most common case. Quantile regression,

Monotone regression, Grenander estimator, and Manski’s estimator all

satisfy this invariance property.

⋆ A classical test for symmetry around zero is the sign-rank test yielding

the COSI confidence interval

ĈI
Sym

n,α :=
[
A⌊2B−1α⌋, A2B−⌊2B−1α⌋

]
,

where A1 ≤ A2 ≤ · · · ≤ A2B−1 is the ordered sequence of all subset

averages {|S |−1
∑

j∈S θ̂j : S ⊆ {1, . . . ,B}}. See Hartigan (1969, JASA)

and Maritz (1979, Biometrika).

⋆ This yields a generalization of randomization based tests under

approximate symmetry of Canay et al. (2017, Econometrica). 14



Scenario III: Unimodal at zero

⋆ For θ(P) ∈ R, consider the scale invariant property of unimodality at

zero. A random variable W is unimodal at zero, if

W
d
= UZ for U ∼ Uniform[0, 1], Z ⊥ U.

⋆ Using Edelman’s (or Lanke’s) confidence interval for mode yields

ĈI
Mode

n,α :=
[
θ̂(1) − tα(θ̂

(2) − θ̂(1)), θ̂(2) + tα(θ̂
(2) − θ̂(1))

]
,

with tα = (1/α− 1).

⋆ This requires only two splits of the data. If more splits are available, one

can reduce tα significantly.

⋆ This is a special case of Unimodal HulC.

⋆ More general confidence intervals for mode are available in the

forthcoming paper Paul and Kuchibhotla (2025+).
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Finite-sample Micoverage Bounds

⋆ For any scale-invariance property P, we have

P
(
θ(P) /∈ ĈI

COSI

n,α

)
≤ α+ B × max

1≤j≤B
dist(θ̂(j) − θ(P), P).

⋆ For zero median property, we have

P(θ(P) /∈ ĈI
HulC

n,α ) ≤ α
(
1 + 2(B∆)2e2B∆

)
,

where

∆ := max
1≤j≤B

(
1

2
− min

s∈{±1}
P(s(θ̂(j) − θ(P)) ≥ 0)

)
+

.

⋆ For symmetry around zero, we have

P(θ(P) /∈ ĈI
Sym

n,α) ≤ α (1 + 2∆)B ,

where

∆ := max
1≤j≤B

E

[(
1

2
− min

s∈{±1}
P(s(θ̂j − θ(P)) ≥ 0

∣∣|θ̂(j) − θ(P)|)
)

+

]
.
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Illustration: Quantile Regression

Yi = X⊤
i β0 + ξi ,Xi ∼ N(0, 0.8I3 + 0.211⊤),

FX (t) = 0.5 + 0.5sgn(t)|t|γ , t ∈ [−1, 1].

17



Pros and Cons

⋆ The procedure needs neither the rate of convergence nor the form of the

limiting distribution. It is computationally efficient.

⋆ For many scale-invariant properties, finite-sample (or distribution-free)

tests can be constructed. This includes central symmetry, angular

symmetry, unimodality at zero, and normality with zero mean.

⋆ Based on the test used for the scale-invariant property, the resulting

confidence sets can have second-order accuracy.

⋆ The disadvantage is that one needs to understand the limiting

distribution of the estimator to conclude the existence of a

scale-invariant property.

⋆ This can be difficult, especially in non-parametric or high-dimensional

problems (e.g., Lasso or non-parametric regression). Even if one knows

the exact limiting distribution, it may not have any scale-invariant

property.
18



Inference II: M-estimation

problemsa

aJoint work with Kenta Takatsu (arXiv:2501.07772)



M-estimation Inference

⋆ Most functionals encountered in practice can be written as

θ(P) := argmin
θ∈Θ

EP [m(θ,Z )],

for some loss function m(θ,Z ). OLS, Quantile regression, Manski’s

model, MLE are some examples.

⋆ Setting

M(θ) := EP [m(θ,Z )],

we know that

θ(P) ⊆
{
θ ∈ Θ : M(θ) ≤ M(θ̂)

}
,

for any estimator θ̂ ∈ Θ.

⋆ Of course, the right hand set is not computable based on the data. But

we can construct two sets based on this intuition and prove their

validity.
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M-estimation Inference

⋆ Consider

ĈI
†
n :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤ 0

}
,

ĈIn,α :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤

zα/2σ̂(θ, θ̂1)

n1/2

}
,

(1)

where M̂n(θ) = n−1
∑n

i=1 m(θ,Zi ) and θ̂1 is obtained from an

independent sample, and σ̂(θ, θ̂1) is the sample standard deviation of

m(θ,Zi )−m(θ̂1,Zi ), 1 ≤ i ≤ n.

⋆ Clearly,

ĈI
†
n ⊆ ĈIn,α for any α ∈ (0, 1), n ≥ 1.

⋆ Note that the definition of the confidence sets have no restrictions on Θ

or θ̂1 except for θ̂1 ∈ Θ.

⋆ This idea exists in the operations research literature (Vogel (2008, J. of

Opt.)) where θ̂1 and M̂n(·) are computed on the same data.
20



Validity

⋆ For any θ̂1, we have

P(θ(P) /∈ ĈIn,α) ≤ P(θ(P) /∈ ĈI
†
n) ≤ E

[
σ2
P(θ̂1)

σ2
P(θ̂1) + nC2

P(θ̂1)

]
,

where

σ2
P(θ

′) := Var(m(θ(P),Z )−m(θ′,Z )),

CP(θ
′) := E[m(θ,Z )]−min

θ∈Θ
E[m(θ,Z )].

⋆ If θ̂1 is consistent for θ(P), then under mild regularity conditions,

P(θ(P) /∈ ĈIn,α) ≥ 1− α− o(1) as n → ∞.

⋆ Neither guarantee depends on Θ or the dimension/definition of θ̂1.

⋆ With a slight modification, we can obtain finite sample validity for these

confidence intervals if the loss is bounded (with a known bound).

⋆ Interestingly, we can show that the confidence region ĈIn,α shrinks to a

singleton at the optimal rate. It adapts!! 21



Simple, non-trivial example

⋆ Consider

θ(P) := argmin E[|Y − X⊤θ|2] + h(θ),

where h(·) is some non-stochastic penalty, such as

h(θ) = λ∥θ∥ρρ, ρ ≥ 0 or

{
0, if Aθ ≤ b,

+∞, if Aθ ≰ b

⋆ The OLS would be a penalized/constrained least squares estimator and

can be efficiently computed.

⋆ However, the limiting distribution of the OLS is incomprehensible

because it depends on the derivative of penalty at θ(P) and/or

inequalities that are active at θ(P), i.e., the coordinates j such that

a⊤j θ(P) = bj .

⋆ To my knowledge, no uniformly valid inference procedure exists except

ĈIn,α. Also, note that our procedure does not require a well-specified

linear model.
22



Inference III: Z-estimation

problemsa

aJoint work with Woonyoung Chang (arXiv:2407.12278)



Z-estimation Problems

⋆ Z -estimation problems refer to functionals defined as solutions to

equations:

EP [Ψ(θ(P),Z )] = 0,

for some estimating equation Ψ : Θ⊗Z → Rd (assuming Θ ⊆ Rd).

⋆ In general, we can consider θ(P) defined by a set of moment equalities

and inequalities. Such weakly/partially identified parameters are

common in econometrics.

⋆ For any set A ⊆ Sd−1 = {u ∈ Rd : ∥u∥ = 1}, consider the set

ĈIn,α =

θ ∈ Θ : sup
a∈A

|
∑n

i=1 a
⊤Ψ(θ,Zi )|√∑n

i=1(a
⊤Ψ(θ,Zi ))2

≤ κα

 ,

where κα = κα(A) is the quantile of the maximum of a sequence of

Gaussian random variables.

23



Z-estimation Problems

⋆ Validity follows from an application of high-dimensional or

infinite-dimensional CLT, and hence, the validity guarantee is tied to the

“complexity” of A.

⋆ With IID observations, and a bootstrap quantile κα(A),

sup
α∈[0,1]

∣∣∣P(θ(P) /∈ ĈIn,α)− α
∣∣∣ ≤ L4 log

5/4(|A|)
n1/4

+
Lq|A|1/q log3/2(|A|)

n1/2−1/q
,

where

Lq := sup
a∈A

(E|a⊤Ψ(θ(P),Z )|q)1/q

(E[|a⊤Ψ(θ(P),Z )|2])1/2
.

⋆ If A = {ej : 1 ≤ j ≤ d} and q = 4, then validity holds whenever

L4 < ∞ and d = õ(n).

⋆ Note that unlike the procedure for M-estimation problem, no pilot

estimator is needed for the construction of the confidence set.

⋆ Choosing A to be a singleton has some interesting implications for a

one-dimensional functional of θ(P). 24



Application: Linear Regression

⋆ Consider

θ(P) satisfying EP [X (Y − X⊤θ(P))] = 0.

⋆ Fix any a ∈ Rd and consider two sets

ĈI
(1)

n,γ :=

a⊤θ : max
1≤j≤d

|
∑n

i=1 e
⊤
j Σ̂−1Xi (Yi − X⊤

i θ)|√∑n
i=1(e

⊤
j Σ̂−1Xi (Yi − X⊤

i θ))2
≤ zγ/(2d)

 ,

ĈI
(2)

n,α :=

a⊤θ :
|
∑n

i=1 a
⊤Σ̂−1Xi (Yi − X⊤

i θ)|√∑n
i=1(a

⊤Σ̂−1Xi (Yi − X⊤
i θ))2

≤ zα/2

 .

Then

P
(
a⊤θ(P) /∈ ĈI

(2)

n,α ∩ ĈI
(1)

n,γ

)
≤ α+ γ

(
1 +

CL33 log
3(2d/γ)√
n

)
,

and

Width(ĈI
(2)

n,α ∩ ĈI
(1)

n,γ) = Op

(
1√
n
+

d

n

)
.
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Conclusions

⋆ Estimation has received a lot of focus in both regular and irregular

settings.

⋆ Traditionally, the construction of tests or confidence sets is mostly

based on some estimation procedure and its limiting distribution.

⋆ We have discussed three new inference procedures, two of which

completely avoid the study of intricate limiting behavior of the pilot

estimator.

⋆ The validity of all three methods is relatively easy, especially compared

to that of resampling methods.

⋆ Although the methods are not developed with optimality as a goal, all

of them yield optimal adaptive confidence sets.

Thank You!
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