Adaptive Inference Techniques for Some Irregular Problems

Inference! Inference! Inference!

Arun Kumar Kuchibhotla

7 March, 2025

Carnegie Mellon University

Collaborators

Manit Paul (UPenn)

Woonyoung Chang (CMU)

Kenta Takatsu (CMU)

Selina Carter (CMU)

ı

Table of contents

- 1. Motivation and Examples
- 2. Inference I: COSI Framework
- 3. Inference II: M-estimation problems¹
- 4. Inference III: Z-estimation problems²
- 5. Conclusions

¹Joint work with Kenta Takatsu (arXiv:2501.07772)

²Joint work with Woonyoung Chang (arXiv:2407.12278)

Motivation and Examples

Inference: confidence intervals

- * Statistical inference is the cornerstone of statistics and is a necessary ingredient in any rigorous scientific study.
- * Suppose we have a (real-valued) functional $\theta(P), P \in \mathcal{P}$, e.g., the mean of P or a coefficient in a regression model.
- Traditional inference methods such as Wald or resampling (e.g. bootstrap or subsampling) proceed as follows.
- \star Assuming the existence of an estimator $\widehat{\theta}_n$ based on n observations such that

$$r_n(\widehat{\theta}_n - \theta(P)) \stackrel{d}{\to} L,$$

a confidence interval can be constructed as

$$\widehat{\mathrm{CI}}_{n,\alpha} := \left[\widehat{\theta}_n - \frac{\widehat{q}_{1-\alpha/2}}{\widehat{r}_n}, \, \widehat{\theta}_n + \frac{\widehat{q}_{\alpha/2}}{\widehat{r}_n} \right],$$

where \hat{q}_{γ} represents an estimate of the γ -th quantile of the random variable L, and \hat{r}_n is an estimate of r_n , if unknown.

Limitations of Traditional Inference

- * Even with asymptotic normality, estimation of asymptotic variance can be difficult.
 - Stochastic Gradient Descent
 - Quantile Regression

Limitations of Traditional Inference

- ★ Even with asymptotic normality, estimation of asymptotic variance can be difficult.
 - Stochastic Gradient Descent
 - Quantile Regression
- * The rate of convergence of the estimator can depend on the underlying data generating process.
 - Quantile Regression
 - Monotone Regression

Limitations of Traditional Inference

- ★ Even with asymptotic normality, estimation of asymptotic variance can be difficult.
 - Stochastic Gradient Descent
 - Quantile Regression
- * The rate of convergence of the estimator can depend on the underlying data generating process.
 - Quantile Regression
 - Monotone Regression
- * The limiting distribution may be intractable, and the estimator is unstable.
 - Linear Regression
 - Manski's discrete choice model
 - Monotone regression
- \star Finally, traditional methods can be computationally expensive.

Motivating Example 1: Linear Regression

★ Suppose (X_i, Y_i) , $1 \le i \le n$ are IID random vectors with $X_i \in \mathbb{R}^d$. Consider

$$\theta(P) := \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \ \mathbb{E}[|Y - X^{\top}\theta|^2].$$

* The OLS estimator $\widehat{\theta}_n$ satisfies

$$\|\widehat{\theta}_n - \theta(P)\| = O_p(\sqrt{d/n}), \text{ if } d = o(n),$$

but for some matrices Σ , V,

$$n^{1/2}(\widehat{\theta}_n - \theta(P)) \stackrel{d}{pprox} N(0, \Sigma^{-1}V\Sigma^{-1}), \text{ only if } d = o(n^{1/2}).$$

This implies the validity of traditional inference if $d = o(n^{1/2})$.

 \star Most of the results and methods fail if $d\gg n^{1/2}$, because

$$n^{1/2}(c^{\top}\widehat{\theta}_n - c^{\top}\theta(P)) \stackrel{p}{\to} \infty.$$

* It is possible to construct a $n^{1/2}$ -consistent estimator if $d = o(n^{2/3})$; Chang, Kuchibhotla, and Rinaldo (2023).

Motivating Exampe 2: Stochastic Gradient Descent

* Suppose

$$\theta(P) := \underset{\theta \in \Theta}{\operatorname{arg \, min}} \ \mathbb{E}_P[m(\theta, Z)].$$

* Consider the SGD iterates:

$$\theta^{(t)} = \theta^{(t-1)} - \eta_t \nabla m(\theta^{(t-1)}, Z_t).$$

* Polyak and Juditsky proved that

$$n^{1/2}(\overline{\theta}_n - \theta(P)) \stackrel{d}{\to} N(0, V(P)),$$

for some variance matrix V(P) that depends on $P, \theta(P)$, and some derivatives of m.

- \star In batch settings, estimating V(P) is not considered hard. But with a computationally efficient algorithm like SGD, it is difficult.
- ★ If dimension is "large" compared to n, then no limiting distribution result is available, in general.

Motivating Example 3: Quantile Regression

- * Suppose $Y_i = X_i^{\top} \theta_0 + \xi_i$ are IID such that $Med(\xi_i | X_i) = 0$.
- \star If $F_X(t) = \mathbb{P}(\xi \leq t|X)$, and for some $\gamma > 0$, (degree of flatness at 0)

$$\lim_{t \to 0} \frac{|F_X(t) - F_X(0)|}{|t|^{\gamma}} = A_X,$$

then with $W \sim N(0, \Sigma)$,

$$n^{1/(2\gamma)}(\widehat{\theta}_n - \theta_0) \stackrel{d}{\to} \underset{u \in \mathbb{R}^d}{\operatorname{arg \, min}} \ u^\top W + \frac{2}{\gamma + 1} \mathbb{E}[A_X | u^\top X|^{\gamma + 1}].$$

- * If $\gamma = 1$, then $A_X = f_{\xi}(0|X)$ and this reduces to the usual asymptotic normality result. In this case, traditional inference is valid.
- ★ The rate of convergence depends on the (unknown) smoothness of the conditional CDF around 0.

Motivating Example 4: Manski's Discrete Choice Model

★ Suppose (X_i, Y_i) , $1 \le i \le n$ are IID random vectors with $X_i \in \mathbb{R}^d$, $Y_i \in \{0, 1\}$, from Manski's model:

$$Y_i = \mathbf{1}\{X_i^{\top}\theta(P) + \xi_i \ge 0\}$$
 with Median $(\xi_i|X_i) = 0$.

- * This is a semiparametric generlization of logistic regression and is used in Econometrics for discrete choice models.
- \star Manski's estimator of $\theta(P)$ is

$$\widehat{\theta}_n := \underset{\theta \in S^{d-1}}{\operatorname{arg\,min}} \sum_{i=1}^n (Y_i - 1/2) \mathbf{1} \{ X_i^\top \theta \ge 0 \}.$$

 \star If the conditional density of ξ given X exists and is smooth, then

$$n^{1/3}(\widehat{\theta}_n - \theta(P)) \stackrel{d}{\to} H \times \operatorname*{arg\,min}_{s \in \mathbb{R}^{d-1}} \mathcal{G}(s) + \frac{s^{\top} V s}{2},$$

for some mean zero Gaussian process $\mathcal{G}(\cdot)$ and some matrix V.

* Wald does not apply, bootstrap is inconsistent, and subsampling is unreliable.

Motivating Example 5: Monotone Regression

- ★ Consider (X_i, Y_i) , $1 \le i \le n$ from the model $Y_i = f_0(X_i) + \xi_i$ where $f_0(\cdot)$ is non-decreasing.
- ⋆ The LSE is given by

$$\widehat{f}_n = \underset{f: \text{ non-decreasing }}{\operatorname{arg \, min}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

* If for some $\gamma > 0$, (degree of flatness at x_0)

$$\lim_{t\to 0} \frac{|f_0(x_0+t)-f_0(x_0)|}{|t|^{\gamma}} = A,$$

then

$$n^{\gamma/(2\gamma+1)}(\widehat{f}_n(x_0)-f_0(x_0)) \stackrel{d}{\to} B_{x_0,\gamma}\mathbb{C}_{\gamma},$$

where $B_{x_0,\gamma}$ is a constant depending on the density of X and variance of ξ at x_0 , and \mathbb{C}_{γ} is related to a drifted two-sided Brownian motion.

* Wald is not applicable, bootstrap is inconsistent, and subsampling is unreliable.

Inference I: COSI Framework

Inference I: COSI (COnfidence sets using Scale Invariance)

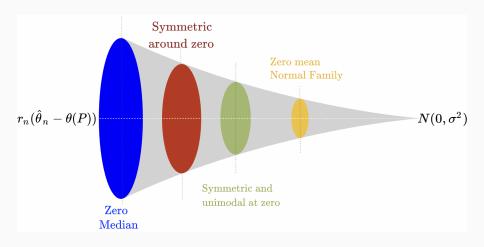


Figure 1: Illustration of Nested Structure of Limiting Distributions

Inference I: COSI Framework

- * Many estimators have a limiting distribution that meets a scale-invariant property.
- * A property $\mathfrak P$ is called *scale invariant*, if for every random variable W satisfying $\mathfrak P$, cW also satisfies $\mathfrak P$ for any $c\geq 0$.
- * Here are a few examples:

Name	Definition
Central Symmetry	$W \stackrel{d}{=} -W$
Angular Symmetry	$W/\ W\ \stackrel{d}{=} -W/\ W\ $
Unimodality at 0	$W\stackrel{d}{=}UZ,\ U\perp Z$
Normal with mean zero	$W \sim \textit{N}(0, \Sigma)$

- * Zero is the "center" for any distribution satisfying a scale invariant property.
- * If $r_n(\widehat{\theta}_n \theta(P)) \stackrel{d}{\to} L$ and L satisfies some scale-invariant property, then $\widehat{\theta}_n \theta(P)$ also approximately satisfies the scale-invariant property.

The COSI Algorithm

- * Suppose we have *n* IID observations Z_1, \ldots, Z_n .
- * Randomly split into *B* batches of approximately equal size and compute the estimator on each batch. We get

$$\begin{pmatrix} r_{n/B}(\widehat{\theta}^{(1)} - \theta(P)) \\ \vdots \\ r_{n/B}(\widehat{\theta}^{(B)} - \theta(P)) \end{pmatrix} \xrightarrow{d} \begin{pmatrix} L^{(1)} \\ \vdots \\ L^{(B)} \end{pmatrix}.$$

- * Note that $L^{(1)}, \ldots, L^{(B)}$ are IID and if the limiting distribution satisfies a scale invariant property \mathfrak{P} , then we can think of $\widehat{\theta^{(j)}} \theta(P), 1 \leq j \leq B$ as IID observations from a distribution that satisfies \mathfrak{P} approximately.
- * Return the confidence set

$$\widehat{\mathrm{CI}}_{n,\alpha} := \left\{\theta : \text{ test for } \mathfrak{P} \text{ using } \{\widehat{\theta}^{(j)} - \theta\}_{j=1}^B \text{ is not rejected}\right\},$$

* Specific scenarios for univariate functionals to follow.

Scenario I: Zero median

* For $\theta(P) \in \mathbb{R}$, consider the scale invariant property of zero median. A random variable $W \in \mathbb{R}$ has zero median if

$$\min \{ \mathbb{P}(W \ge 0), \, \mathbb{P}(W \le 0) \} \ge 1/2.$$

- \star Asymptotic zero median is same as "estimator is equally likely to over-estimate and under-estimate $\theta(P)$."
- * A classical test for zero median is the sign test yielding the COSI confidence interval

$$\widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{GHulC}} := \left[\widehat{\theta}^{(\lfloor B/2 \rfloor - c_{B,\alpha})}, \, \widehat{\theta}^{(\lceil B/2 \rceil + c_{B,\alpha} + 1)}\right], \quad \text{if } B \geq \log_2(2/\alpha).$$

Here $c_{B,\alpha}$ is the $(1 - \alpha/2)$ -th quantile of $Bin(B, 1/2) - \lfloor B/2 \rfloor$.

* This is a generalization of the HulC confidence intervals of Kuchibhotla et al. (2024, JRSS-B), studied in Paul and Kuchibhotla (2024).

Scenario II: Symmetry around zero

* For $\theta(P) \in \mathbb{R}$, consider the scale invariant property of symmetry around zero. A random variable $W \in \mathbb{R}$ is symmetric around zero if

$$W \stackrel{d}{=} -W$$
 or equivalently $|W| \perp \text{sign}(W)$.

- Next to normality, this is the most common case. Quantile regression, Monotone regression, Grenander estimator, and Manski's estimator all satisfy this invariance property.
- * A classical test for symmetry around zero is the sign-rank test yielding the COSI confidence interval

$$\widehat{\mathrm{CI}}_{n,\alpha}^{\mathrm{Sym}} := \left[A_{\lfloor 2^{B-1}\alpha \rfloor}, \, A_{2^B-\lfloor 2^{B-1}\alpha \rfloor} \right],$$

where $A_1 \leq A_2 \leq \cdots \leq A_{2^B-1}$ is the ordered sequence of all subset averages $\{|S|^{-1}\sum_{j\in S}\widehat{\theta_j}: S\subseteq \{1,\ldots,B\}\}$. See Hartigan (1969, JASA) and Maritz (1979, Biometrika).

 This yields a generalization of randomization based tests under approximate symmetry of Canay et al. (2017, Econometrica).

Scenario III: Unimodal at zero

* For $\theta(P) \in \mathbb{R}$, consider the scale invariant property of unimodality at zero. A random variable W is unimodal at zero, if

$$W \stackrel{d}{=} UZ$$
 for $U \sim \text{Uniform}[0,1], Z \perp U$.

* Using Edelman's (or Lanke's) confidence interval for mode yields

$$\widehat{\mathrm{CI}}_{n,\alpha}^{\mathrm{Mode}} := \left[\widehat{\theta}^{(1)} - t_{\alpha}(\widehat{\theta}^{(2)} - \widehat{\theta}^{(1)}), \ \widehat{\theta}^{(2)} + t_{\alpha}(\widehat{\theta}^{(2)} - \widehat{\theta}^{(1)})\right],$$
 with $t_{\alpha} = (1/\alpha - 1)$.

- \star This requires only two splits of the data. If more splits are available, one can reduce t_{α} significantly.
- * This is a special case of Unimodal HulC.
- More general confidence intervals for mode are available in the forthcoming paper Paul and Kuchibhotla (2025+).

Finite-sample Micoverage Bounds

 \star For any scale-invariance property $\mathfrak{P},$ we have

$$\mathbb{P}\left(\theta(P)\notin\widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{COSI}}\right)\leq \alpha+B\times\max_{1\leq j\leq B}\mathrm{dist}(\widehat{\theta}^{(j)}-\theta(P),\,\mathfrak{P}).$$

Finite-sample Micoverage Bounds

 \star For any scale-invariance property \mathfrak{P} , we have

$$\mathbb{P}\left(\theta(P)\notin\widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{COSI}}\right)\leq \alpha+B\times\max_{1\leq j\leq B}\mathrm{dist}(\widehat{\theta}^{(j)}-\theta(P),\,\mathfrak{P}).$$

* For zero median property, we have

$$\mathbb{P}(\theta(P) \notin \widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{HulC}}) \leq \alpha \left(1 + 2(B\Delta)^2 e^{2B\Delta}\right),\,$$

where

$$\Delta := \max_{1 \le j \le B} \left(\frac{1}{2} - \min_{s \in \{\pm 1\}} \mathbb{P}(s(\widehat{\theta}^{(j)} - \theta(P)) \ge 0) \right)_{+}.$$

Finite-sample Micoverage Bounds

 \star For any scale-invariance property $\mathfrak{P},$ we have

$$\mathbb{P}\left(\theta(P)\notin\widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{COSI}}\right)\leq \alpha+B\times\max_{1\leq j\leq B}\mathrm{dist}(\widehat{\theta}^{(j)}-\theta(P),\,\mathfrak{P}).$$

* For zero median property, we have

$$\mathbb{P}(\theta(P) \notin \widehat{\mathrm{CI}}_{n,\alpha}^{\mathrm{HulC}}) \leq \alpha \left(1 + 2(B\Delta)^2 e^{2B\Delta}\right),$$

where

$$\Delta := \max_{1 \leq j \leq B} \left(\frac{1}{2} - \min_{s \in \{\pm 1\}} \mathbb{P} (s(\widehat{\theta}^{(j)} - \theta(P)) \geq 0) \right)_{+}.$$

* For symmetry around zero, we have

$$\mathbb{P}(\theta(P) \notin \widehat{\mathrm{CI}}_{n,\alpha}^{\mathtt{Sym}}) \leq \alpha (1 + 2\Delta)^{B},$$

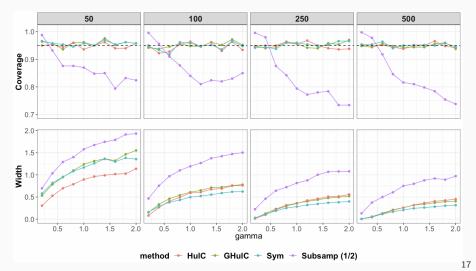
where

$$\Delta := \max_{1 \leq j \leq B} \mathbb{E} \left[\left(\frac{1}{2} - \min_{s \in \{\pm 1\}} \mathbb{P}(s(\widehat{\theta}^j - \theta(P)) \geq 0 \middle| |\widehat{\theta}^{(j)} - \theta(P)|) \right)_+ \right].$$

Illustration: Quantile Regression

$$Y_i = X_i^{\top} \beta_0 + \xi_i, X_i \sim N(0, 0.8I_3 + 0.211^{\top}),$$

 $F_X(t) = 0.5 + 0.5 \text{sgn}(t) |t|^{\gamma}, t \in [-1, 1].$



Pros and Cons

- * The procedure needs neither the rate of convergence nor the form of the limiting distribution. It is computationally efficient.
- * For many scale-invariant properties, finite-sample (or distribution-free) tests can be constructed. This includes central symmetry, angular symmetry, unimodality at zero, and normality with zero mean.
- * Based on the test used for the scale-invariant property, the resulting confidence sets can have second-order accuracy.
- * The disadvantage is that one needs to understand the limiting distribution of the estimator to conclude the existence of a scale-invariant property.
- * This can be difficult, especially in non-parametric or high-dimensional problems (e.g., Lasso or non-parametric regression). Even if one knows the exact limiting distribution, it may not have any scale-invariant property.

Inference II: M-estimation problems^a

^aJoint work with Kenta Takatsu (arXiv:2501.07772)

M-estimation Inference

* Most functionals encountered in practice can be written as

$$\theta(P) := \underset{\theta \in \Theta}{\arg\min} \ \mathbb{E}_P[m(\theta, Z)],$$

for some loss function $m(\theta, Z)$. OLS, Quantile regression, Manski's model, MLE are some examples.

* Setting

$$\mathbb{M}(\theta) := \mathbb{E}_P[m(\theta, Z)],$$

we know that

$$\theta(P)\subseteq \left\{\theta\in\Theta:\, \mathbb{M}(\theta)\leq \mathbb{M}(\widehat{\theta})\right\},$$

for any estimator $\widehat{\theta} \in \Theta$.

* Of course, the right hand set is not computable based on the data. But we can construct two sets based on this intuition and prove their validity.

M-estimation Inference

* Consider

$$\widehat{\mathrm{CI}}_{n}^{\dagger} := \left\{ \theta \in \Theta : \widehat{\mathbb{M}}_{n}(\theta) - \widehat{\mathbb{M}}_{n}(\widehat{\theta}_{1}) \leq 0 \right\},$$

$$\widehat{\mathrm{CI}}_{n,\alpha} := \left\{ \theta \in \Theta : \widehat{\mathbb{M}}_{n}(\theta) - \widehat{\mathbb{M}}_{n}(\widehat{\theta}_{1}) \leq \frac{z_{\alpha/2}\widehat{\sigma}(\theta,\widehat{\theta}_{1})}{n^{1/2}} \right\},$$
(1)

where $\widehat{\mathbb{M}}_n(\theta) = n^{-1} \sum_{i=1}^n m(\theta, Z_i)$ and $\widehat{\theta}_1$ is obtained from an independent sample, and $\widehat{\sigma}(\theta, \widehat{\theta}_1)$ is the sample standard deviation of $m(\theta, Z_i) - m(\widehat{\theta}_1, Z_i), 1 \le i \le n$.

* Clearly,

$$\widehat{\mathrm{CI}}_n^\dagger \subseteq \widehat{\mathrm{CI}}_{n,\alpha} \quad \text{for any} \quad \alpha \in (0,1), n \geq 1.$$

- * Note that the definition of the confidence sets have no restrictions on Θ or $\widehat{\theta}_1$ except for $\widehat{\theta}_1 \in \Theta$.
- * This idea exists in the operations research literature (Vogel (2008, J. of Opt.)) where $\widehat{\theta}_1$ and $\widehat{\mathbb{M}}_n(\cdot)$ are computed on the same data.

Validity

 \star For any $\widehat{\theta}_1$, we have

$$\mathbb{P}(\theta(P)\notin\widehat{\mathrm{CI}}_{n,\alpha})\leq \mathbb{P}(\theta(P)\notin\widehat{\mathrm{CI}}_n^\dagger)\leq \mathbb{E}\left[\frac{\sigma_P^2(\widehat{\theta}_1)}{\sigma_P^2(\widehat{\theta}_1)+{}_{{I\!\!P}}\mathbb{C}_P^2(\widehat{\theta}_1)}\right],$$

where

$$\sigma_P^2(\theta') := \text{Var}(m(\theta(P), Z) - m(\theta', Z)),$$

$$\mathbb{C}_P(\theta') := \mathbb{E}[m(\theta, Z)] - \min_{\theta \in \Theta} \mathbb{E}[m(\theta, Z)].$$

 \star If $\widehat{\theta}_1$ is consistent for $\theta(P)$, then under mild regularity conditions,

$$\mathbb{P}(\theta(P) \notin \widehat{\mathrm{CI}}_{n,\alpha}) \geq 1 - \alpha - o(1)$$
 as $n \to \infty$.

- \star Neither guarantee depends on Θ or the dimension/definition of $\widehat{ heta}_1$.
- * With a slight modification, we can obtain finite sample validity for these confidence intervals if the loss is bounded (with a known bound).
- * Interestingly, we can show that the confidence region $\widehat{\mathrm{CI}}_{n,\alpha}$ shrinks to a singleton at the optimal rate. It adapts!!

Simple, non-trivial example

* Consider

$$\theta(P) := \arg\min \mathbb{E}[|Y - X^{\top}\theta|^2] + h(\theta),$$

where $h(\cdot)$ is some non-stochastic penalty, such as

$$h(\theta) = -\lambda \|\theta\|_{\rho}^{\rho}, \quad \rho \ge 0 \quad \text{or} \quad \begin{cases} 0, & \text{if } A\theta \le b, \\ +\infty, & \text{if } A\theta \nleq b \end{cases}$$

- ★ The OLS would be a penalized/constrained least squares estimator and can be efficiently computed.
- * However, the limiting distribution of the OLS is incomprehensible because it depends on the derivative of penalty at $\theta(P)$ and/or inequalities that are active at $\theta(P)$, i.e., the coordinates j such that $a_j^{\top}\theta(P)=b_j$.
- * To my knowledge, no uniformly valid inference procedure exists except $\widehat{\mathrm{CI}}_{n,\alpha}$. Also, note that our procedure does not require a well-specified linear model.

Inference III: Z-estimation problems^a

^aJoint work with Woonyoung Chang (arXiv:2407.12278)

Z-estimation Problems

* Z-estimation problems refer to functionals defined as solutions to equations:

$$\mathbb{E}_P[\Psi(\theta(P), Z)] = 0,$$

for some estimating equation $\Psi:\Theta\otimes\mathcal{Z}\to\mathbb{R}^d$ (assuming $\Theta\subseteq\mathbb{R}^d$).

- \star In general, we can consider $\theta(P)$ defined by a set of moment equalities and inequalities. Such weakly/partially identified parameters are common in econometrics.
- \star For any set $\mathcal{A}\subseteq S^{d-1}=\{u\in\mathbb{R}^d:\,\|u\|=1\}$, consider the set

$$\widehat{\mathrm{CI}}_{n,\alpha} = \left\{ \theta \in \Theta : \sup_{a \in \mathcal{A}} \frac{|\sum_{i=1}^{n} a^{\top} \Psi(\theta, Z_i)|}{\sqrt{\sum_{i=1}^{n} (a^{\top} \Psi(\theta, Z_i))^2}} \leq \kappa_{\alpha} \right\},\,$$

where $\kappa_{\alpha} = \kappa_{\alpha}(\mathcal{A})$ is the quantile of the maximum of a sequence of Gaussian random variables.

Z-estimation Problems

- \star Validity follows from an application of high-dimensional or infinite-dimensional CLT, and hence, the validity guarantee is tied to the "complexity" of \mathcal{A} .
- \star With IID observations, and a bootstrap quantile $\kappa_{\alpha}(\mathcal{A})$,

$$\sup_{\alpha \in [0,1]} \left| \mathbb{P}(\theta(P) \notin \widehat{\mathrm{CI}}_{n,\alpha}) - \alpha \right| \leq \frac{L_4 \log^{5/4}(|\mathcal{A}|)}{n^{1/4}} + \frac{L_q |\mathcal{A}|^{1/q} \log^{3/2}(|\mathcal{A}|)}{n^{1/2 - 1/q}},$$

where

$$L_q := \sup_{a \in \mathcal{A}} \frac{(\mathbb{E}|a^\top \Psi(\theta(P), Z)|^q)^{1/q}}{(\mathbb{E}[|a^\top \Psi(\theta(P), Z)|^2])^{1/2}}.$$

- * If $A = \{e_j : 1 \le j \le d\}$ and q = 4, then validity holds whenever $L_4 < \infty$ and $d = \tilde{o}(n)$.
- * Note that unlike the procedure for M-estimation problem, no pilot estimator is needed for the construction of the confidence set.
- * Choosing \mathcal{A} to be a singleton has some interesting implications for a one-dimensional functional of $\theta(P)$.

Application: Linear Regression

* Consider

$$\theta(P)$$
 satisfying $\mathbb{E}_P[X(Y-X^{\top}\theta(P))]=0.$

 \star Fix any $a \in \mathbb{R}^d$ and consider two sets

$$\widehat{\operatorname{CI}}_{n,\gamma}^{(1)} := \left\{ a^{\top}\theta : \max_{1 \leq j \leq d} \frac{|\sum_{i=1}^{n} e_{j}^{\top} \widehat{\Sigma}^{-1} X_{i} (Y_{i} - X_{i}^{\top} \theta)|}{\sqrt{\sum_{i=1}^{n} (e_{j}^{\top} \widehat{\Sigma}^{-1} X_{i} (Y_{i} - X_{i}^{\top} \theta))^{2}}} \leq z_{\gamma/(2d)} \right\},$$

$$\widehat{\operatorname{CI}}_{n,\alpha}^{(2)} := \left\{ a^{\top}\theta : \frac{|\sum_{i=1}^{n} a^{\top} \widehat{\Sigma}^{-1} X_{i} (Y_{i} - X_{i}^{\top} \theta)|}{\sqrt{\sum_{i=1}^{n} (a^{\top} \widehat{\Sigma}^{-1} X_{i} (Y_{i} - X_{i}^{\top} \theta))^{2}}} \leq z_{\alpha/2} \right\}.$$

Then

$$\mathbb{P}\left(\mathbf{a}^{\top}\theta(P)\notin\widehat{\mathrm{CI}}_{n,\alpha}^{(2)}\cap\widehat{\mathrm{CI}}_{n,\gamma}^{(1)}\right)\leq \alpha+\gamma\left(1+\frac{\mathfrak{C}L_3^3\log^3(2d/\gamma)}{\sqrt{n}}\right),$$

and

$$\mathsf{Width}\big(\widehat{\mathsf{CI}}_{n,\alpha}^{(2)}\cap\widehat{\mathsf{CI}}_{n,\gamma}^{(1)}\big) = \mathit{O}_{\mathit{p}}\left(\frac{1}{\sqrt{n}} + \frac{d}{n}\right).$$

Conclusions

Conclusions

- Estimation has received a lot of focus in both regular and irregular settings.
- * Traditionally, the construction of tests or confidence sets is mostly based on some estimation procedure and its limiting distribution.
- We have discussed three new inference procedures, two of which completely avoid the study of intricate limiting behavior of the pilot estimator.
- The validity of all three methods is relatively easy, especially compared to that of resampling methods.
- * Although the methods are not developed with optimality as a goal, all of them yield optimal adaptive confidence sets.

Conclusions

- * Estimation has received a lot of focus in both regular and irregular settings.
- * Traditionally, the construction of tests or confidence sets is mostly based on some estimation procedure and its limiting distribution.
- * We have discussed three new inference procedures, two of which completely avoid the study of intricate limiting behavior of the pilot estimator.
- * The validity of all three methods is relatively easy, especially compared to that of resampling methods.
- * Although the methods are not developed with optimality as a goal, all of them yield optimal adaptive confidence sets.

Thank You!