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Machine Learning vs Statistics

Some classical machine learning themes:
Prediction: click-through, consumer choices, investment returns, ...

Classification: images, speech, text, ...

Online decision making

=⇒ Construction of data-driven black boxes, automation
for Technology

A classical statistics theme:
SEs, tests, p-values, CIs (2 meanings), posteriors, ... for

STATISTICAL INFERENCE

=⇒ Knowledge acquisition by humans
for Science
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A Crisis in the Sciences: Irreproducibility

Indicators of a crisis:
Bayer Healthcare reviewed 67 in-house attempts at replicating findings in
published research: < 1/4 were viewed as replicated

Arrowsmith (2011, Nat. Rev. Drug Discovery 10):
Increasing failure rate in Phase II drug trials

Ioannidis (2005, PLOS Medicine):
“Why Most Published Research Findings Are False”

Simmons, Nelson, Simonsohn (2011, Psychol.Sci):
“False-Positive Psychology: Undisclosed Flexibility in Data Collection
and Analysis Allows Presenting Anything as Significant”

=⇒ Irreproducibility of Empirical Findings

Many potential causes – two major ones:
Institutional: Publication bias, “file drawer problem”

Methodological: Statistical biases, “researcher degrees of freedom”
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Irreproducibility: Methodol. Factor 1 – Selection

A statistical bias is due to lack of accounting for
selection of variables, transforms, scales, subsets, weights, ....

Regressor/model selection (our focus) is on several levels:

formal selection: all subset (Cp, AIC, BIC,...), stepwise (F), lasso,...

informal selection: diagnostics for GoF, influence, collinearity,...

post hoc selection: “Effect size is too small, the variable too costly.”

Suspicions and Criticisms:

All three modes of selection are (should be) used.

More thorough data analysis =⇒ More spurious results

Not a solution: Post-selection inference for “adaptive Lasso”, say.
Empirical researchers do not write contracts with themselves to
commit a priori to one formal selection method and nothing else.
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The “PoSI” Solution to Selection: FWER Control

PoSI Procedure — general version:
Define a universeM of models M you might ever consider/select:
outcomes (Y ), regressors (X ), their transforms (f (X ),g(Y )), ...

Define the universe of all tests you might ever perform in these
models, typically for regression coeffs βj,M (j ’th coeff in model M).

Consider the minimum of the p-values for all these tests:
Obtain its 0.05 quantile α0.05 for FWER adjustment.

Now freely examine your data and select models M̂ ∈M,
reconsider, re-select, re-reconsider, ... but compare all p-values
against α0.05, not 0.05, for 0.05M-FWER control.

Cost-Benefit Analysis:
Cost: Huge computation upfront — adjustment for millions of tests

Benefits: Solution to the circularity problem — select model M̂,
don’t like it, select M̂ ′, don’t like it, ... PoSI inference remains valid.
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Irreproducibility: Methodol. Factor 2 – Misspecification

Models are approximations, not generative truths.
=⇒ Consequences!

What is the target βj,M of β̂j,M? Stay tuned.

Model bias interacts with regressor distributions to cause
model-trusting SEs to be off, sometimes too small by a factor of 2.

V [β̂] = E [V [β̂|X ]] + V [E [β̂|X ]]

Do not condition on the regressors; do not treat them as fixed!

Use model-robust standard errors, for example, from
the x-y pairs or multiplier bootstraps, not the residual bootstrap!

Wanted: PoSI Protection under Misspecification!

Up next: Asymptotic theory for Regressor Selection
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Linear Regression: A Simple Question

Suppose (Xi ,Yi) ∈ Rp × R are n independent random vectors and the
least squares linear regression estimator β̂n is computed, that is,

β̂n := arg min
θ∈Rp

1
n

n∑
i=1

(Yi − X>i θ)2,

=

(
1
n

n∑
i=1

XiX>i

)−1(1
n

n∑
i=1

XiYi

)
is computed assuming the matrix above is invertible.

Problem
What is β̂n estimating? Can there be a justification for this without the
usual Gauss-Markov assumptions? Is independence necessary?

Note that random vectors can be non-identically distributed.
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Linear Regression

From definition, β̂n is a smooth (non-linear) function, G(·, ·), of two
averages:

β̂n = G
(

1
n

n∑
i=1

XiX>i ,
1
n

n∑
i=1

XiYi

)
.

If the random vectors (Xi ,Yi) are such that these averages
converge to their expectations, then by Slutsky’s theorem

β̂n − βn = op(1),

where

βn := G
(

1
n

n∑
i=1

E
[
XiX>i

]
,

1
n

n∑
i=1

E [XiYi ]

)
.

Hence there exists a target of estimation under "minimal"
assumptions that require neither linearity nor homoscedastic
Gaussian errors.
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Inference under Misspecification

Recall β̂n estimates the best linear projection in the OLS sense:

βn := argmin
θ∈Rp

1
n

n∑
i=1

E
[(

Yi − X>i θ
)2
]
.

From the definitions, we have for Zi := (
∑

i E[XiX>i ]/n)−1Xi :

√
n
(
β̂n − βn

)
= 1√

n

∑n
i=1 Zi

(
Yi − X>i βn

)
+ op(1). (1)

It follows: The estimate β̂n behaves like an average. This provides
a basis for asymptotically valid inference (e.g., x-y bootstrap).

Model-Robustness: Inference justified by the linear representation
(1) is valid without classical model assumptions.
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Linear Regression: A harder question

Select a subset of variables M̂ ⊆ {1,2, . . . ,p} using best subset
selection or lasso, say. Compute the OLS estimator β̂n,M̂ in M̂:

β̂n,M̂ := arg min
θ∈R|M̂|

1
n

n∑
i=1

(
Yi − X>i (M̂) θ

)2
,

=
(1

n
∑n

i=1 Xi(M̂)X>i (M̂)
)−1 (1

n
∑n

i=1 Xi(M̂)Yi
)

assuming the matrix above is invertible.

Problem
What does β̂n,M̂ estimate? Do we need assumptions for M̂?
Do we need independent observations?
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Introducing Sparsity

Classical regression: For p (< n) regressors, β̂n satisfies∥∥∥β̂n − βn

∥∥∥
2

= Op

(√
p/n

)
.

For p > n it is not possible to use all regressors due to collinearity
in estimation.

Suppose we select M̂ ⊆ {1, . . . ,p} with |M̂| ≤ k where k < n,
but allowing M̂ to be based on all p (> n) regressors.

=⇒ High-dimensional sparse regression!

β̂n,M̂ estimates the random target βn,M̂ ! But how?

Significant triviality:
∥∥∥β̂n,M̂ − βn,M̂

∥∥∥
2
≤ sup|M|≤k

∥∥∥β̂n,M − βn,M

∥∥∥
2
.
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Definitions

For function f (x , y), where x ∈ Rp, y ∈ R, define:

P̂n[f (X ,Y )] =
1
n

n∑
i=1

f (Xi ,Yi), and Pn[f (X ,Y )] =
1
n

n∑
i=1

E[f (Xi ,Yi)].

Sample
Gram matrix:

Σ̂n := P̂n

[
XX>

]
.

“Covariance” Vector:

Γ̂n := P̂n [XY ] .

Estimator in model M:

β̂n,M := (Σ̂n(M))−1Γ̂n(M).

Population
Gram matrix:

Σn := Pn

[
XX>

]
.

“Covariance” Vector:

Γn := Pn [XY ] .

Target in model M:

βn,M := (Σn(M))−1 Γn(M).
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General Result: Deterministic Inequality

Definitions:

Dn(k) = max
|M|≤k

∥∥∥Γ̂n(M)− Γn(M)
∥∥∥

2
, RIPn(k) = max

|M|≤k

∥∥∥Σ̂n(M)− Σn(M)
∥∥∥

op

Theorem
Let n, k ≥ 1 be integers such that RIPn(k) ≤ λmin(Σn)/2. Then,

sup
|M|≤k

∥∥∥β̂n,M − βn,M

∥∥∥
2
≤ C [Dn(k) + RIPn(k)] ,

for some constant C depending only on Σn.

Under independence or functional dependence, and sub-Gaussianity:

max {Dn(k), RIPn(k)} = Op

(√
k log(ep/k)

n

)
.
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Implications of General Result

Under independence or functional dependence (k ≥ 1):

sup
|M|≤k

∥∥∥β̂n,M − βn,M

∥∥∥
2

= Op

(√
k log(ep/k)

n

)
.

For a data-dependent regressor subset M̂, the estimator β̂n,M̂ is
consistent for its random target βn,M̂ at the rate

√
k log(ep/k)/n.
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Asymptotic Uniform Linear Representation

Similar to the uniform consistency result, under independence or
functional dependence, uniformly over |M| ≤ k , we have:∥∥∥∥∥β̂n,M − βn,M −

1
n

n∑
i=1

Zi,M

(
Yi − X>i (M)βn,M

)∥∥∥∥∥
2

= Op

(
k
n

log
(ep

k

))
,

where Zi,M = (Σn(M))−1 Xi(M).

This implies that uniformly over all k -sparse models M,

√
n
(
β̂n,M − βn,M

)
≈ 1√

n

n∑
i=1

Zi,M

(
Yi − X>i (M)βn,M

)
.

Averages all over: Leverage this for asymptotically valid FWER
control over all |M| ≤ k by stacking all averages on the right side...
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Simultaneous Confidence Regions

Define the t-statistic tj,M for the regressor j ∈ M:

tj,M(θ) :=
√

n
(
β̂n,M(j)− θ(j)

)
/σ̂n,M(j), θ ∈ R|M|.

Define the statistic “max-|t |” = max
|M|≤k

max
j∈M
|tj,M(βn,M)|,

and let Kα be its upper α-quantile.

Kα can be consistently estimated by the multiplier bootstrap.
A similar procedure works under dependence.

Define for any model M the confidence region

R̂n,M :=

{
θ ∈ R|M| : max

1≤j≤|M|

∣∣tj,M(θ)
∣∣ ≤ Kα

}
,

It follows that for any randomly selected model M̂ with |M̂| ≤ k ,

lim inf
n→∞

P
(
βn,M̂ ∈ R̂n,M̂

)
≥ 1− α.
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Towards “Optimal” Confidence Regions

The key component of PoSI: the max-|t | statistic given by

max-|t| = max
|M|≤k

max
j∈M
|tj,M(βn,M)|.

This is the statistic used by Berk et al. (2013) (for OLS) and by
Bachoc et al. (2016) (for general M-estimators).

Flaw: This statistic does not account for the hierarchy of models.
Smaller models should have smaller confidence regions.

Solution: Treat each model size |M| separately, then pool.
Suitably modified confidence regions have size that scales
“optimally” with |M|. (Work in progress.)
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Conclusions

We have studied linear OLS regression allowing for both
misspecification and data-dependent regressor selection.

The observations (i = 1, . . . ,n) are allowed to be dependent and
non-identically distributed. This unification was made possible by
deterministic inequalities.

In all these settings we also provide inference tools based on
high-dimensional multiplier bootstrap.

The method of inference is computationally intensive and is
provably NP-hard, but for linear regression there exist
computationally efficient methods (Kuchibhotla et al. 2017).

Finally, we note that everything mentioned here applies to a large
class of M-estimators, including GLMs.
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