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Maximal Inequalities



Maximal Inequalities

e In this talk, maximal inequalities refer to bounds on quantities like
E[sup,c 7 X;] for a stochastic process {X;}¢c7.

e This expected supremum arises naturally in finding rates of
convergence of empirical risk minimizers, including the least squares
estimator.

e Formally, suppose (X;, Y;),1 < i < nareiid with Y; = f(X;) + ¢,
(E[e;|Xi] = 0). For a function class F, set

?,,:z argmin Y, — F(X))?.
gmin3_(vi (X))

e |t is well-known that ||f,, — foll2 = Op(ry) for r, satisfying
dn(rm) < \/nr?, where

(bn((s) =E

sup
[[f—foll2<d

\% S eilf — 6)0X)

which is a expected supremum of a stochastic process. 5



Chaining for Maximal Inequalities

e One of the classical techniques for bounding the expected supremum
is chaining. There are two prominent chaining version: Dudley's
chaining and generic chaining.

e The general idea is as follows: construct sets To C Ty C --- C T
such that T is a finite cardinality set for every j < oo.

e Forany t € T, let 7j(t) € T; denote an element of T; that is closest
to tin T;. Then we get
Xe = Xao(t) + Y (Xnst) = Xy 1(0)-
j=1

e Taking the supremum over all t € T and the expectation, we get

E {sup Xt} <E {sup Xs} + ZIE {sup | X 6) — Xopao)l | -

teT se€To o1 LteT

e For each fixed j > 1, the right hand side term is expected maximum
of finite number of random variables.



Chaining for Maximal Inequalities

As shown for any sequence of nested sets To C Ty C --- C T,

sup X:| <E {sup X} + E {sup Xei(t) — Xaj_
|:t€T t} seTo Z teT | -0
If the nested sets T;'s are chosen so as to ensure

supie [ Xe — Xq(pll2 < 277, then we get Dudley’s chaining.

If the nested sets T;'s are chosen so that Card(T;) < 22j, then we
get generic chaining.

For some specific stochastic processes X;,t € T, it is known that
the bound obtained via generic chaining cannot be improved. There
are examples where Dudley's chaining is sub-optimal.

Irrespective of the optimality, the chaining methods reduce the
problem of controlling expected supremum of a stochastic process to
that of expected maximum of a finite number of random variables.



Chaining for Maximal Inequalities

e Recall for any sequence of nested sets To C Ty C --- C T,

E {sup Xt} <E {sup X} + ZE {sup | X (6) — Xy o (o)
teT s€To = et
e To control the expected maximum's on the right hand side, one of
the common assumptions used is sub-Gaussian increments, i.e., for
Xs||lw, < Cd(s,t) Vs, t € T.
e Exponential moment control is what is more important here than

some distance measure d(-,-),

sub-Gaussianity. Such exponential moment control allows one to
conclude that

SUP|X7r t) = Xn;_1()]
< max (£, () /log(| T1) + max da(t, m (1))l T1))",
for some distance measure dy, d>» and some 3 > 0.

Logarithmic dependence on |T;| implies good bounds.



Maximal Inequality for Finite
Maximum




e Exponential moment control for increments of the stochastic process
implies logarithmic dependence on | T;|. The converse is not true.

e For example, in case of the least squares estimator,
X =n"123""  ei(f — f)(X;) and even if € only has 2+ 17
moments, one can obtain logarithmic dependence.

e The reason simply is that €; is a common factor when considering
the supremum over f and a simple truncation arguments yields this
result.

e Are there general maximal inequalities for finite maximums that
yield logarithmic dependence?



Theorem (K and Patra (2022, AoS))
Suppose X1, ..., X, are iid random variables in some measurable space X

and fy, ..., fN are arbitrary mean zero functions from X to R with
|filla < 8. Then for any q > 2,

3o

where F(x) = maxi<j<n |f;(x)|.

1/2+1/q

12 1/q

max (3log(2N))* 9 IF |,

s 6log(2N) +

e Always a logarithmic dependence on N as long as the envelope F
has finite g-th moment.

e Even with ¢ = 2, this bound implies a rate of \/log(N) which is the
optimal dependence under Gaussianity.

e This bound improves upon a result of Chernozhukov et al. (2015).

e For motivation, recall

E

3 oete

If— fo|\2<6



Finite maximums: optimality

e Is the bound provided optimal?
e Set A, = maxi<j<n |72 37 f(X;)|. Recall the bound

o 1-1/q
s ZiFle. @

e Answer: No! In general, this bound is not optimal.

E[A.] S 3y/log(N) +

e For g = oo, this bound is provably sub-optimal. In this case (1)

|
E[A,] < 6+/log +°g ) [1F e

e The sub-optimality can be seen easily by notmg that (1) for g = o0

becomes

can be obtained via Bernstein's inequality which can be improved via
Bennett's inequality:

[[Flloc log(N)/v/n
log(3[|F |13 log(2N)/(nd?) v 1

E[A] S 5y/log(N) + (2)

which is as good as (1).



Some problems in maximal
inequalities




Finite maximums: optimal bound for g = co

e Even with this correction based on Bennett's inequality, one cannot
claim optimality for each collection of f;'s.

e The formulation of optimality requires certain uniformity over a
collection of £'s.

o Define A,({fi}) = maxi<j<n [n/2 327, £(X;)| and
ES(A, B) = sup{E[A,({fi})] - E[fi(Xi)] = 0, [|filla < A, [[fillc < B}
e Note that £2 (A, B) depends on n, N, A, B.

e Using the optimality of Bennett's inequality over all bounded
random variables (Major, 2005, Prob. Surveys), one can show that
the proposed bound before is optimal for £ (A, B).

e But bounded random variables are sub-exponential and not the most
interesting practical case.



Finite maximums: optimality for g < oo

o Recall An({fi}) = maxicjcn [n~/2 351, £(X5)].
e With F(x) = maxi<j<n|fi(x)|. Define
£3(A, B) = sup{E[AA({6})] < E[6(X)] =0, [[f]l2 < A, [IFll, < BY.

e &, is the largest expected value when given variance bound on
individual functions and L, control on the envelope.

o We know E2(A, B) < Ay/log(N) + B(log(N))* /9 /n*/271/a.

e This bound is already logarithmic in N. But this cannot be optimal
as g — oo. What is the optimal bound?

e Answer currently unknown. Using some classical results, one can
obtain some reductions.
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Reductions for Optimality

e Recall A,({f}) = maxi<j<n [n™Y237  £(X;)| and
F(x) = maxigjen [£(x)|-
e Define
Eq,00(A; B, Boo) = sup {E[An({£})] -
E[f(X)] =0, [[filla < A, [[Fllx < Bx, k = g,00}.
e In comparison to £, & ., has an additional control on ||F||.

e It can be proved using results of de la Pena and Gine (1999) that
there exists T,(A, B) such that
Eq(A) < &5 (A B, T4(A, B)) + Mgy(A, B),

where

Mq(a. ) = sup {B | max FOX0)| + EGOO] = 0. 5]l < A, ¥l < B

1<i<n
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Conclusions




Conclusions

e Maximal inequalities are in shortage for heavy-tailed data. Such
maximal inequalities yield better understanding of ERMs under
weaker assumptions.

e In the context of non-parametric least squares estimator, the
proposed maximal inequalities for finite maximums yield new results
under heavy-tailed data.

e The study of optimal maximal inequalities is non-existent to the best
of the author's knowledge. Some results due to Pinelis do exist for
smooth Banach spaces which do not readily apply to the problem at
hand.

e Optimal maximal inequalities for finite maximums can pave way for
deriving optimal maximal inequalities for supremum of empirical
processes.

12



References

e Chernozhukov, V., Chetverikov, D., and Kato, K. (2015).
Comparison and anti-concentration bounds for maxima of Gaussian
random vectors. Prob. Theory Related Fields, 162(1-2):47-70.

e de la Pena, V. H. and Gine, E. (1999). Decoupling. Springer-Verlag
(New York).

e Kuchibhotla and Patra (2022). On Least Squares Estimation Under
Heteroscedastic and Heavy-Tailed Errors. Annals of Statistics.

13



References

e Chernozhukov, V., Chetverikov, D., and Kato, K. (2015).
Comparison and anti-concentration bounds for maxima of Gaussian
random vectors. Prob. Theory Related Fields, 162(1-2):47-70.

e de la Pena, V. H. and Gine, E. (1999). Decoupling. Springer-Verlag
(New York).

e Kuchibhotla and Patra (2022). On Least Squares Estimation Under
Heteroscedastic and Heavy-Tailed Errors. Annals of Statistics.

Thank You!

13



	Maximal Inequalities
	Maximal Inequality for Finite Maximum
	Some problems in maximal inequalities
	Conclusions

