Refined Maximal Inequalities: Some Questions and Answers

Arun Kumar Kuchibhotla

2 July, 2022
Carnegie Mellon University

Table of contents

1. Maximal Inequalities
2. Maximal Inequality for Finite Maximum
3. Some problems in maximal inequalities
4. Conclusions

Maximal Inequalities

Maximal Inequalities

- In this talk, maximal inequalities refer to bounds on quantities like $\mathbb{E}\left[\sup _{t \in T} X_{t}\right]$ for a stochastic process $\left\{X_{t}\right\}_{t \in T}$.
- This expected supremum arises naturally in finding rates of convergence of empirical risk minimizers, including the least squares estimator.
- Formally, suppose $\left(X_{i}, Y_{i}\right), 1 \leq i \leq n$ are iid with $Y_{i}=f_{0}\left(X_{i}\right)+\varepsilon_{i}$ $\left(\mathbb{E}\left[\varepsilon_{i} \mid X_{i}\right]=0\right)$. For a function class \mathcal{F}, set

$$
\widehat{f}_{n}:=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-f\left(X_{i}\right)\right)^{2}
$$

- It is well-known that $\left\|\widehat{f}_{n}-f_{0}\right\|_{2}=O_{p}\left(r_{n}\right)$ for r_{n} satisfying $\phi_{n}\left(r_{n}\right) \leq \sqrt{n} r_{n}^{2}$, where

$$
\phi_{n}(\delta)=\mathbb{E}\left[\sup _{\left\|f-f_{0}\right\|_{2} \leq \delta}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_{i}\left(f-f_{0}\right)\left(X_{i}\right)\right|\right],
$$

which is a expected supremum of a stochastic process.

Chaining for Maximal Inequalities

- One of the classical techniques for bounding the expected supremum is chaining. There are two prominent chaining version: Dudley's chaining and generic chaining.
- The general idea is as follows: construct sets $T_{0} \subset T_{1} \subset \cdots \subset T$ such that T_{j} is a finite cardinality set for every $j<\infty$.
- For any $t \in T$, let $\pi_{j}(t) \in T_{j}$ denote an element of T_{j} that is closest to t in T_{j}. Then we get

$$
X_{t}=X_{\pi_{0}(t)}+\sum_{j=1}^{\infty}\left(X_{\pi_{j}(t)}-X_{\pi_{j-1}(t)}\right)
$$

- Taking the supremum over all $t \in T$ and the expectation, we get

$$
\mathbb{E}\left[\sup _{t \in T} X_{t}\right] \leq \mathbb{E}\left[\sup _{s \in T_{0}} X_{s}\right]+\sum_{j=1}^{\infty} \mathbb{E}\left[\sup _{t \in T}\left|X_{\pi_{j}(t)}-X_{\pi_{j-1}(t)}\right|\right] .
$$

- For each fixed $j \geq 1$, the right hand side term is expected maximum of finite number of random variables.

Chaining for Maximal Inequalities

- As shown for any sequence of nested sets $T_{0} \subset T_{1} \subset \cdots \subset T$,

$$
\mathbb{E}\left[\sup _{t \in T} X_{t}\right] \leq \mathbb{E}\left[\sup _{s \in T_{0}} X_{s}\right]+\sum_{j=1}^{\infty} \mathbb{E}\left[\sup _{t \in T}\left|X_{\pi_{j}(t)}-X_{\pi_{j-1}(t)}\right|\right] .
$$

- If the nested sets T_{j} 's are chosen so as to ensure $\sup _{t \in T}\left\|X_{t}-X_{\pi_{j}(t)}\right\|_{2} \leq 2^{-j}$, then we get Dudley's chaining.
- If the nested sets T_{j} 's are chosen so that $\operatorname{Card}\left(T_{j}\right) \leq 2^{2^{j}}$, then we get generic chaining.
- For some specific stochastic processes $X_{t}, t \in T$, it is known that the bound obtained via generic chaining cannot be improved. There are examples where Dudley's chaining is sub-optimal.
- Irrespective of the optimality, the chaining methods reduce the problem of controlling expected supremum of a stochastic process to that of expected maximum of a finite number of random variables.

Chaining for Maximal Inequalities

- Recall for any sequence of nested sets $T_{0} \subset T_{1} \subset \cdots \subset T$,

$$
\mathbb{E}\left[\sup _{t \in T} X_{t}\right] \leq \mathbb{E}\left[\sup _{s \in T_{0}} X_{s}\right]+\sum_{j=1}^{\infty} \mathbb{E}\left[\sup _{t \in T}\left|X_{\pi_{j}(t)}-X_{\pi_{j-1}(t)}\right|\right] .
$$

- To control the expected maximum's on the right hand side, one of the common assumptions used is sub-Gaussian increments, i.e., for some distance measure $d(\cdot, \cdot),\left\|X_{t}-X_{s}\right\|_{\psi_{2}} \leq C d(s, t) \forall s, t \in T$.
- Exponential moment control is what is more important here than sub-Gaussianity. Such exponential moment control allows one to conclude that

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{t \in T}\left|X_{\pi_{j}(t)}-X_{\pi_{j-1}(t)}\right|\right] \\
& \leq \max _{t \in T} d_{1}\left(t, \pi_{j}(t)\right) \sqrt{\log \left(\left|T_{j}\right|\right)}+\max _{t \in T} d_{2}\left(t, \pi_{j}(t)\right)\left(\log \left(\left|T_{j}\right|\right)\right)^{\beta}
\end{aligned}
$$

for some distance measure d_{1}, d_{2} and some $\beta>0$.
Logarithmic dependence on $\left|T_{j}\right|$ implies good bounds.

Maximal Inequality for Finite Maximum

Finite Maximums

- Exponential moment control for increments of the stochastic process implies logarithmic dependence on $\left|T_{j}\right|$. The converse is not true.
- For example, in case of the least squares estimator, $X_{f}=n^{-1 / 2} \sum_{i=1}^{n} \varepsilon_{i}\left(f-f_{0}\right)\left(X_{i}\right)$ and even if ε only has $2+\eta$ moments, one can obtain logarithmic dependence.
- The reason simply is that ε_{i} is a common factor when considering the supremum over f and a simple truncation arguments yields this result.
- Are there general maximal inequalities for finite maximums that yield logarithmic dependence?

Finite Maximums

Theorem (K. and Patra (2022, AoS))
Suppose X_{1}, \ldots, X_{n} are iid random variables in some measurable space \mathcal{X} and f_{1}, \ldots, f_{N} are arbitrary mean zero functions from \mathcal{X} to \mathbb{R} with $\left\|f_{j}\right\|_{2} \leq \delta$. Then for any $q \geq 2$,
$\mathbb{E}\left[\max _{1 \leq j \leq N}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} f_{j}\left(X_{i}\right)\right|\right] \leq \delta \sqrt{6 \log (2 N)}+\frac{2^{1 / 2+1 / q}}{n^{1 / 2-1 / q}}(3 \log (2 N))^{1-1 / q}\|F\|_{q}$,
where $F(x)=\max _{1 \leq j \leq N}\left|f_{j}(x)\right|$.

- Always a logarithmic dependence on N as long as the envelope F has finite q-th moment.
- Even with $q=2$, this bound implies a rate of $\sqrt{\log (N)}$ which is the optimal dependence under Gaussianity.
- This bound improves upon a result of Chernozhukov et al. (2015).
- For motivation, recall

$$
\mathbb{E}\left[\sup _{\left\|f-f_{0}\right\|_{2} \leq \delta}\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_{i}\left(f-f_{0}\right)\left(X_{i}\right)\right|\right]
$$

Finite maximums: optimality

- Is the bound provided optimal?
- Set $\Delta_{n}=\max _{1 \leq j \leq N}\left|n^{-1 / 2} \sum_{i=1}^{n} f_{j}\left(X_{i}\right)\right|$. Recall the bound

$$
\begin{equation*}
\mathbb{E}\left[\Delta_{n}\right] \lesssim \delta \sqrt{\log (N)}+\frac{(\log (N))^{1-1 / q}}{n^{1 / 2-1 / q}}\|F\|_{q} . \tag{1}
\end{equation*}
$$

- Answer: No! In general, this bound is not optimal.
- For $q=\infty$, this bound is provably sub-optimal. In this case (1) becomes

$$
\mathbb{E}\left[\Delta_{n}\right] \lesssim \delta \sqrt{\log (N)}+\frac{\log (N)}{\sqrt{n}}\|F\|_{\infty} .
$$

- The sub-optimality can be seen easily by noting that (1) for $q=\infty$ can be obtained via Bernstein's inequality which can be improved via Bennett's inequality:

$$
\begin{equation*}
\mathbb{E}\left[\Delta_{n}\right] \lesssim \delta \sqrt{\log (N)}+\frac{\|F\|_{\infty} \log (N) / \sqrt{n}}{\log \left(3\|F\|_{\infty}^{2} \log (2 N) /\left(n \delta^{2}\right) \vee 1\right.}, \tag{2}
\end{equation*}
$$

which is as good as (1).

Some problems in maximal inequalities

Finite maximums: optimal bound for $q=\infty$

- Even with this correction based on Bennett's inequality, one cannot claim optimality for each collection of f_{j} 's.
- The formulation of optimality requires certain uniformity over a collection of f_{j} 's.
- Define $\Delta_{n}\left(\left\{f_{j}\right\}\right)=\max _{1 \leq j \leq N}\left|n^{-1 / 2} \sum_{i=1}^{n} f_{j}\left(X_{i}\right)\right|$ and $\mathcal{E}_{\infty}^{\circ}(A, B)=\sup \left\{\mathbb{E}\left[\Delta_{n}\left(\left\{f_{j}\right\}\right)\right]: \mathbb{E}\left[f_{j}\left(X_{i}\right)\right]=0,\left\|f_{j}\right\|_{2} \leq A,\left\|f_{j}\right\|_{\infty} \leq B\right\}$.
- Note that $\mathcal{E}_{\infty}^{\circ}(A, B)$ depends on n, N, A, B.
- Using the optimality of Bennett's inequality over all bounded random variables (Major, 2005, Prob. Surveys), one can show that the proposed bound before is optimal for $\mathcal{E}_{\infty}^{\circ}(A, B)$.
- But bounded random variables are sub-exponential and not the most interesting practical case.

Finite maximums: optimality for $q<\infty$

- Recall $\Delta_{n}\left(\left\{f_{j}\right\}\right)=\max _{1 \leq j \leq N}\left|n^{-1 / 2} \sum_{i=1}^{n} f_{j}\left(X_{i}\right)\right|$.
- With $F(x)=\max _{1 \leq j \leq N}\left|f_{j}(x)\right|$. Define

$$
\mathcal{E}_{q}^{\circ}(A, B)=\sup \left\{\mathbb{E}\left[\Delta_{n}\left(\left\{f_{j}\right\}\right)\right]: \mathbb{E}\left[f_{j}\left(X_{i}\right)\right]=0,\left\|f_{j}\right\|_{2} \leq A,\|F\|_{q} \leq B\right\} .
$$

- \mathcal{E}_{q}° is the largest expected value when given variance bound on individual functions and L_{q} control on the envelope.
- We know $\mathcal{E}_{q}^{\circ}(A, B) \lesssim A \sqrt{\log (N)}+B(\log (N))^{1-1 / q} / n^{1 / 2-1 / q}$.
- This bound is already logarithmic in N. But this cannot be optimal as $q \rightarrow \infty$. What is the optimal bound?
- Answer currently unknown. Using some classical results, one can obtain some reductions.

Reductions for Optimality

- Recall $\Delta_{n}\left(\left\{f_{j}\right\}\right)=\max _{1 \leq j \leq N}\left|n^{-1 / 2} \sum_{i=1}^{n} f_{j}\left(X_{i}\right)\right|$ and $F(x)=\max _{1 \leq j \leq N}\left|f_{j}(x)\right|$.
- Define

$$
\begin{aligned}
\mathcal{E}_{q, \infty}^{\circ}\left(A, B_{q}, B_{\infty}\right) & =\sup \left\{\mathbb{E}\left[\Delta_{n}\left(\left\{f_{j}\right\}\right)\right]:\right. \\
& \left.\mathbb{E}\left[f_{j}\left(X_{i}\right)\right]=0,\left\|f_{j}\right\|_{2} \leq A,\|F\|_{k} \leq B_{k}, k=q, \infty\right\} .
\end{aligned}
$$

- In comparison to $\mathcal{E}_{q}^{\circ}, \mathcal{E}_{q, \infty}^{\circ}$ has an additional control on $\|F\|_{\infty}$.
- It can be proved using results of de la Pena and Gine (1999) that there exists $T_{q}(A, B)$ such that

$$
\mathcal{E}_{q}^{\circ}(A) \asymp \mathcal{E}_{q, \infty}^{\circ}\left(A, B, T_{q}(A, B)\right)+\mathcal{M}_{q}(A, B),
$$

where

$$
\mathcal{M}_{q}(A, B)=\sup \left\{\mathbb{E}\left[\max _{1 \leq i \leq n} F\left(X_{i}\right)\right]: \mathbb{E}\left[f_{j}\left(X_{i}\right)\right]=0,\left\|f_{j}\right\|_{2} \leq A,\|F\|_{q} \leq B\right\}
$$

Conclusions

Conclusions

- Maximal inequalities are in shortage for heavy-tailed data. Such maximal inequalities yield better understanding of ERMs under weaker assumptions.
- In the context of non-parametric least squares estimator, the proposed maximal inequalities for finite maximums yield new results under heavy-tailed data.
- The study of optimal maximal inequalities is non-existent to the best of the author's knowledge. Some results due to Pinelis do exist for smooth Banach spaces which do not readily apply to the problem at hand.
- Optimal maximal inequalities for finite maximums can pave way for deriving optimal maximal inequalities for supremum of empirical processes.

References

- Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Prob. Theory Related Fields, 162(1-2):47-70.
- de la Pena, V. H. and Gine, E. (1999). Decoupling. Springer-Verlag (New York).
- Kuchibhotla and Patra (2022). On Least Squares Estimation Under Heteroscedastic and Heavy-Tailed Errors. Annals of Statistics.

References

- Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Comparison and anti-concentration bounds for maxima of Gaussian random vectors. Prob. Theory Related Fields, 162(1-2):47-70.
- de la Pena, V. H. and Gine, E. (1999). Decoupling. Springer-Verlag (New York).
- Kuchibhotla and Patra (2022). On Least Squares Estimation Under Heteroscedastic and Heavy-Tailed Errors. Annals of Statistics.

Thank You!

