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Maximal Inequalities



Maximal Inequalities

• In this talk, maximal inequalities refer to bounds on quantities like

E[supt∈T Xt ] for a stochastic process {Xt}t∈T .

• This expected supremum arises naturally in finding rates of

convergence of empirical risk minimizers, including the least squares

estimator.

• Formally, suppose (Xi ,Yi ), 1 ≤ i ≤ n are iid with Yi = f0(Xi ) + εi
(E[εi |Xi ] = 0). For a function class F , set

f̂n := argmin
f∈F

n∑
i=1

(Yi − f (Xi ))
2.

• It is well-known that ∥f̂n − f0∥2 = Op(rn) for rn satisfying

ϕn(rn) ≤
√
nr2n , where

ϕn(δ) = E

[
sup

∥f−f0∥2≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f0)(Xi )

∣∣∣∣∣
]
,

which is a expected supremum of a stochastic process. 2



Chaining for Maximal Inequalities

• One of the classical techniques for bounding the expected supremum

is chaining. There are two prominent chaining version: Dudley’s

chaining and generic chaining.

• The general idea is as follows: construct sets T0 ⊂ T1 ⊂ · · · ⊂ T

such that Tj is a finite cardinality set for every j < ∞.

• For any t ∈ T , let πj(t) ∈ Tj denote an element of Tj that is closest

to t in Tj . Then we get

Xt = Xπ0(t) +
∞∑
j=1

(Xπj (t) − Xπj−1(t)).

• Taking the supremum over all t ∈ T and the expectation, we get

E
[
sup
t∈T

Xt

]
≤ E

[
sup
s∈T0

Xs

]
+

∞∑
j=1

E
[
sup
t∈T

|Xπj (t) − Xπj−1(t)|
]
.

• For each fixed j ≥ 1, the right hand side term is expected maximum

of finite number of random variables.
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Chaining for Maximal Inequalities

• As shown for any sequence of nested sets T0 ⊂ T1 ⊂ · · · ⊂ T ,

E
[
sup
t∈T

Xt

]
≤ E

[
sup
s∈T0

Xs

]
+

∞∑
j=1

E
[
sup
t∈T

|Xπj (t) − Xπj−1(t)|
]
.

• If the nested sets Tj ’s are chosen so as to ensure

supt∈T ∥Xt − Xπj (t)∥2 ≤ 2−j , then we get Dudley’s chaining.

• If the nested sets Tj ’s are chosen so that Card(Tj) ≤ 22
j

, then we

get generic chaining.

• For some specific stochastic processes Xt , t ∈ T , it is known that

the bound obtained via generic chaining cannot be improved. There

are examples where Dudley’s chaining is sub-optimal.

• Irrespective of the optimality, the chaining methods reduce the

problem of controlling expected supremum of a stochastic process to

that of expected maximum of a finite number of random variables.
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Chaining for Maximal Inequalities

• Recall for any sequence of nested sets T0 ⊂ T1 ⊂ · · · ⊂ T ,

E
[
sup
t∈T

Xt

]
≤ E

[
sup
s∈T0

Xs

]
+

∞∑
j=1

E
[
sup
t∈T

|Xπj (t) − Xπj−1(t)|
]
.

• To control the expected maximum’s on the right hand side, one of

the common assumptions used is sub-Gaussian increments, i.e., for

some distance measure d(·, ·), ∥Xt − Xs∥ψ2 ≤ Cd(s, t) ∀s, t ∈ T .

• Exponential moment control is what is more important here than

sub-Gaussianity. Such exponential moment control allows one to

conclude that

E
[
sup
t∈T

|Xπj (t) − Xπj−1(t)|
]

≤ max
t∈T

d1(t, πj(t))
√

log(|Tj |) + max
t∈T

d2(t, πj(t))(log(|Tj |))β ,

for some distance measure d1, d2 and some β > 0.

Logarithmic dependence on |Tj | implies good bounds.
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Maximal Inequality for Finite

Maximum



Finite Maximums

• Exponential moment control for increments of the stochastic process

implies logarithmic dependence on |Tj |. The converse is not true.

• For example, in case of the least squares estimator,

Xf = n−1/2
∑n

i=1 εi (f − f0)(Xi ) and even if ε only has 2 + η

moments, one can obtain logarithmic dependence.

• The reason simply is that εi is a common factor when considering

the supremum over f and a simple truncation arguments yields this

result.

• Are there general maximal inequalities for finite maximums that

yield logarithmic dependence?
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Finite Maximums

Theorem (K. and Patra (2022, AoS))
Suppose X1, . . . ,Xn are iid random variables in some measurable space X
and f1, . . . , fN are arbitrary mean zero functions from X to R with

∥fj∥2 ≤ δ. Then for any q ≥ 2,

E

[
max

1≤j≤N

∣∣∣∣∣ 1√
n

n∑
i=1

fj(Xi )

∣∣∣∣∣
]
≤ δ

√
6 log(2N) +

21/2+1/q

n1/2−1/q
(3 log(2N))1−1/q∥F∥q,

where F (x) = max1≤j≤N |fj(x)|.

• Always a logarithmic dependence on N as long as the envelope F

has finite q-th moment.

• Even with q = 2, this bound implies a rate of
√
log(N) which is the

optimal dependence under Gaussianity.

• This bound improves upon a result of Chernozhukov et al. (2015).

• For motivation, recall

E

[
sup

∥f−f0∥2≤δ

∣∣∣∣∣ 1√
n

n∑
i=1

εi (f − f0)(Xi )

∣∣∣∣∣
]
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Finite maximums: optimality

• Is the bound provided optimal?

• Set ∆n = max1≤j≤N |n−1/2
∑n

i=1 fj(Xi )|. Recall the bound

E [∆n] ≲ δ
√
log(N) +

(log(N))1−1/q

n1/2−1/q
∥F∥q. (1)

• Answer: No! In general, this bound is not optimal.

• For q = ∞, this bound is provably sub-optimal. In this case (1)

becomes

E[∆n] ≲ δ
√

log(N) +
log(N)√

n
∥F∥∞.

• The sub-optimality can be seen easily by noting that (1) for q = ∞
can be obtained via Bernstein’s inequality which can be improved via

Bennett’s inequality:

E [∆n] ≲ δ
√
log(N) +

∥F∥∞ log(N)/
√
n

log(3∥F∥2∞ log(2N)/(nδ2) ∨ 1
, (2)

which is as good as (1).
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Some problems in maximal

inequalities



Finite maximums: optimal bound for q = ∞

• Even with this correction based on Bennett’s inequality, one cannot

claim optimality for each collection of fj ’s.

• The formulation of optimality requires certain uniformity over a

collection of fj ’s.

• Define ∆n({fj}) = max1≤j≤N |n−1/2
∑n

i=1 fj(Xi )| and

E◦
∞(A,B) = sup {E [∆n({fj})] : E[fj(Xi )] = 0, ∥fj∥2 ≤ A, ∥fj∥∞ ≤ B} .

• Note that E◦
∞(A,B) depends on n,N,A,B.

• Using the optimality of Bennett’s inequality over all bounded

random variables (Major, 2005, Prob. Surveys), one can show that

the proposed bound before is optimal for E◦
∞(A,B).

• But bounded random variables are sub-exponential and not the most

interesting practical case.
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Finite maximums: optimality for q < ∞

• Recall ∆n({fj}) = max1≤j≤N |n−1/2
∑n

i=1 fj(Xi )|.

• With F (x) = max1≤j≤N |fj(x)|. Define

E◦
q (A,B) = sup{E[∆n({fj})] : E[fj(Xi )] = 0, ∥fj∥2 ≤ A, ∥F∥q ≤ B}.

• E◦
q is the largest expected value when given variance bound on

individual functions and Lq control on the envelope.

• We know E◦
q (A,B) ≲ A

√
log(N) + B(log(N))1−1/q/n1/2−1/q.

• This bound is already logarithmic in N. But this cannot be optimal

as q → ∞. What is the optimal bound?

• Answer currently unknown. Using some classical results, one can

obtain some reductions.
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Reductions for Optimality

• Recall ∆n({fj}) = max1≤j≤N |n−1/2
∑n

i=1 fj(Xi )| and
F (x) = max1≤j≤N |fj(x)|.

• Define

E◦
q,∞(A,Bq,B∞) = sup {E[∆n({fj})] :

E[fj(Xi )] = 0, ∥fj∥2 ≤ A, ∥F∥k ≤ Bk , k = q,∞} .

• In comparison to E◦
q , E◦

q,∞ has an additional control on ∥F∥∞.

• It can be proved using results of de la Pena and Gine (1999) that

there exists Tq(A,B) such that

E◦
q (A) ≍ E◦

q,∞(A,B,Tq(A,B)) +Mq(A,B),

where

Mq(A,B) = sup

{
E
[
max
1≤i≤n

F (Xi )

]
: E[fj(Xi )] = 0, ∥fj∥2 ≤ A, ∥F∥q ≤ B

}
.
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Conclusions

• Maximal inequalities are in shortage for heavy-tailed data. Such

maximal inequalities yield better understanding of ERMs under

weaker assumptions.

• In the context of non-parametric least squares estimator, the

proposed maximal inequalities for finite maximums yield new results

under heavy-tailed data.

• The study of optimal maximal inequalities is non-existent to the best

of the author’s knowledge. Some results due to Pinelis do exist for

smooth Banach spaces which do not readily apply to the problem at

hand.

• Optimal maximal inequalities for finite maximums can pave way for

deriving optimal maximal inequalities for supremum of empirical

processes.
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