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Motivation and Examples



Inference: confidence intervals

⋆ Statistical inference is the cornerstone of statistics and is a necessary

ingredient in any rigorous scientific study.

⋆ Suppose we have a (real-valued) functional θ(P),P ∈ P, e.g., the mean

of P or a coefficient in a regression model.

⋆ Traditional inference methods such as Wald or resampling (e.g.

bootstrap or subsampling) proceed as follows.

⋆ Assuming the existence of an estimator θ̂n based on n observations such

that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

r̂n
, θ̂n +

q̂α/2
r̂n

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L, and r̂n is an estimate of rn, if unknown.
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Motivating Example 1: Linear Regression

⋆ Suppose (Xi ,Yi ), 1 ≤ i ≤ n are IID random vectors with Xi ∈ Rd .

Consider

θ(P) := argmin
θ∈Rd

E[|Y − X⊤θ|2].

⋆ The OLS estimator θ̂n satisfies

∥θ̂n − θ(P)∥ = Op(
√
d/n),

but with Σ = EP [XX
⊤] and V = EP [XX

⊤(Y − X⊤θ(P))2],

n1/2(θ̂n − θ(P))
d
≈ N(0,Σ−1VΣ−1), only if d = o(n1/2).

This implies the validity of traditional Wald or bootstrap inference if

d = o(n1/2).

⋆ Most of the results and methods fail if d ≫ n1/2.

4



Motivating Example 1: Linear Regression (Contd.)

⋆ In general, it can be proved that

n1/2(c⊤θ̂n − c⊤θ(P)) =
1√
n

n∑
i=1

c⊤IF(Xi ,Yi ) + Op

(
d√
n

)
,

with the first term approximately normal.

⋆ Hence, if d ≫ n1/2, then

n1/2(c⊤θ̂n − c⊤θ(P))
p→ ∞.

⋆ We can debias the estimator that converges to normal if d = o(n2/3). It

is not yet known whether there exists a debiased estimator that is

asymptotically normal for all d = o(n).

⋆ See Chang, Kuchibhotla, and Rinaldo (2023, arXiv:2307.00795) for

details.
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Motivating Example 2: Quantile Regression

⋆ Suppose (Xi ,Yi ), 1 ≤ i ≤ n are IID random vectors with Xi ∈ Rd .

Consider

θ(P) := argmin
θ∈Rd

E[|Y − X⊤θ|].

⋆ If Yi = X⊤
i θ0 + ξi for some conditionally zero median random variables

ξi , then θ(P) = θ0.

⋆ If the conditional density of ξi given Xi is bounded away from zero

almost surely, then

n1/2(θ̂n − θ0)
d→ N(0, Γ−1ΣΓ−1),

where Γ = EP [fξ(0|X )XX⊤] and Σ = EP [XX
⊤]. In this case, traditional

Wald and bootstrap are consistent.

⋆ What happens if the conditional density is zero or does not exist?
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Motivating Example 2: Quantile Regression

⋆ If FX (t) = P(ξ ≤ t|X ), and

FX (t)− FX (0) = AX |t|γsgn(t)(1 + o(t)) as t → 0,

then

n1/(2γ)(θ̂n − θ0)
d→ argmin

u∈Rd

u⊤W +
2

γ + 1
E[AX |u⊤X |γ+1].

⋆ If γ = 1, then AX = fξ(0|X ) and this reduces to the usual asymptotic

normality result.

⋆ The rate of convergence depends on the (unknown) smoothness of the

conditional CDF around 0.

⋆ Bootstrap is valid if and only if γ = 1. Wald inference cannot be

applied without the knowledge of γ.
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Motivating Example 3: Manski’s Discrete Choice Model

⋆ Suppose (Xi ,Yi ), 1 ≤ i ≤ n are IID random vectors with Xi ∈ Rd ,

Yi ∈ {0, 1}, from Manski’s model:

Yi = 1{X⊤
i θ(P) + ξi ≥ 0} with Median(ξi |Xi ) = 0.

⋆ This is a semiparametric generlization of logistic regression and is used

in Econometrics for discrete choice models.

⋆ Manski’s estimator of θ(P) is

θ̂n := argmin
θ∈Sd−1

n∑
i=1

(Yi − 1/2)1{X⊤
i θ ≥ 0}.

⋆ If the conditional density of ξ given X exists and is smooth, then

n1/3(θ̂n − θ(P))
d→ H × argmin

s∈Rd−1

G(s) + s⊤Vs

2
,

for some mean zero Gaussian process G(·) and some matrix v .

⋆ Wald does not apply, bootstrap is inconsistent, and subsampling is

unreliable. 8



Motivating Example 4: Monotone Regression

⋆ Consider (Xi ,Yi ), 1 ≤ i ≤ n from the model Yi = f0(Xi ) + ξi where f0(·)
is non-decreasing.

⋆ The LSE is given by

f̂n = argmin
f : non−decreasing

n∑
i=1

(Yi − f (Xi ))
2.

⋆ If f0(x0 + t)− f0(x0) = A|t|γsgn(t)(1 + o(1)) as t → 0, then

nγ/(2γ+1)(f̂n(x0)− f0(x0))
d→

(
σ2(x0)A

1/γ

h(x0)(γ + 1)1/γ

)γ/(2γ+1)

Cγ ,

where Cγ is related to a drifted two-sided Brownian motion.

⋆ Wald is not applicable, bootstrap is inconsistent, and subsampling is

unreliable.

⋆ Any L-Lipschitz g can be written as g(x) = f0(x)− Lx for some

non-decreasing f0. Hence, inference for f0 implies inference for Lipschitz

functions. 9



Some Observations

⋆ Asymptotic normality is only one of the many possibilities for limiting

distributions.

⋆ Often with non-normal limiting distributions, the rate of convergence of

the estimator is not n1/2. More importantly, the rate can depend on the

underlying properties of the data-generating process.

⋆ The limiting distribution in many cases can be written as the minimizer

of some stochastic process. Pflug (1995, Math. of OR) identified three

classes of such stochastic processes that appear in limiting distributions.

See Bhowmick and Kuchibhotla (2024, arXiv:2411.17087) for details.

⋆ Bootstrap and other resampling methods tend to fail when the limiting

distribution is non-normal.

⋆ Wald interval also becomes difficult to implement.
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Inference I: COSI Framework



Inference I: COSI (COnfidence sets using Scale Invariance)

Figure 1: Illustration of Nested Structure of Limiting Distributions
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Inference I: COSI Framework

⋆ Many estimators have a limiting distribution that meets a

scale-invariant property.

⋆ A property P is called scale invariant, if for every random variable W

satisfying P, cW also satisfies P for any c ≥ 0.

⋆ Here are a few examples:

Name Definition

Central Symmetry W
d
= −W

Angular Symmetry W /∥W ∥ d
= −W /∥W ∥

Unimodality at 0 Density maximized uniquely at 0

Normal with mean zero W ∼ N(0,Σ)

⋆ Zero is the “center” for any distribution satisfying a scale invariant

property.

⋆ If rn(θ̂n − θ(P))
d→ L and L satisfies some scale-invariant property, then

θ̂n − θ(P) also approximately satisfies the scale-invariant property.
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The COSI Algorithm

⋆ Suppose we have n IID observations Z1, . . . ,Zn.

⋆ Randomly split into B batches of approximately equal size and compute

the estimator on each batch. We get
rn/B(θ̂

(1) − θ(P))
...

rn/B(θ̂
(B) − θ(P))

 d→

L(1)

...

L(B)

 .

⋆ Note that L(1), . . . , L(B) are IID and if the limiting distribution satisfies a

scale invariant property P, then we can think of θ̂(j) − θ(P), 1 ≤ j ≤ B

as IID observations from a distribution that satisfies P approximately.

⋆ Return the confidence set

ĈIn,α :=
{
θ : test for P using {θ̂(j) − θ}Bj=1 is not rejected

}
,

⋆ Specific scenarios for univariate functionals to follow.
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Scenario I: Zero mean Normality

⋆ For θ(P) ∈ R, consider the scale invariant property of zero mean

normality. A random variable W ∈ R is zero mean normal if

W ∼ N(0, σ2) for some σ ≥ 0.

⋆ This is commonly occurring case for “regular” parametric and

semiparametric models.

⋆ A classical test for testing zero mean of a normal is the t-test yielding

the COSI confidence interval

ĈI
t-test

n,α :=

 1

B

B∑
j=1

θ̂j ± sB√
B
tB−1,α

 ,

where s2B =
∑B

j=1(θ̂j − θ̄B)
2/(B − 1).

⋆ This is precisely the t-test confidence interval of Ibragimov and Muller

(2010, Journal of Business and Economic Statistics).

14



Scenario II: Zero median

⋆ For θ(P) ∈ R, consider the scale invariant property of zero median. A

random variable W ∈ R has zero median if

min {P(W ≥ 0), P(W ≤ 0)} ≥ 1/2.

⋆ Asymptotic zero median is same as “estimator is equally likely to

over-estimate and under-estimate θ(P).”

⋆ A classical test for zero median is the sign test yielding the COSI

confidence interval

ĈI
HulC

n,α :=
[
θ̂(⌊B/2⌋−cB,α), θ̂(⌈B/2⌉+cB,α+1)

]
, if B ≥ log2(2/α).

Here cB,α is the (1− α/2)-th quantile of Bin(B, 1/2)− ⌊B/2⌋.

⋆ This is a generalization of the HulC confidence intervals proposed in

Kuchibhotla et al. (2024, JRSS-B).
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Scenario III: Symmetry around zero

⋆ For θ(P) ∈ R, consider the scale invariant property of symmetry around

zero. A random variable W ∈ R is symmetric around zero if

W
d
= −W or equivalently |W | ⊥ sign(W ).

⋆ Next to normality, this is the most common case. Quantile regression,

Monotone regression, Grenander estimator, and Manski’s estimator all

satisfy this invariance property.

⋆ A classical test for symmetry around zero is the sign-rank test yielding

the COSI confidence interval

ĈI
Sym

n,α :=
[
A⌊2B−1α⌋, A2B−⌊2B−1α⌋

]
,

where A1 ≤ A2 ≤ · · · ≤ A2B−1 is the ordered sequence of all subset

averages {|S |−1
∑

j∈S θ̂j : S ⊆ {1, . . . ,B}}. See Hartigan (1969, JASA)

and Maritz (1979, Biometrika).

⋆ This yields a generalization of randomization based tests under

approximate symmetry of Canay et al. (2017, Econometrica). 16



Finite-sample Micoverage Bounds

⋆ For any scale-invariance property P, we have

P
(
θ(P) /∈ ĈI

COSI

n,α

)
≤ α+ B × max

1≤j≤B
dist(θ̂(j) − θ(P), P).

⋆ For zero median property, we have

P(θ(P) /∈ ĈI
HulC

n,α ) ≤ α
(
1 + 2B∆e2B∆

)
,

where

∆ := max
1≤j≤B

(
1

2
− min

s∈{±1}
P(s(θ̂(j) − θ(P)) ≥ 0)

)
+

.

⋆ For symmetry around zero, we have

P(θ(P) /∈ ĈI
Sym

n,α) ≤ α (1 + 2∆)B ,

where

∆ := max
1≤j≤B

E

[(
1

2
− min

s∈{±1}
P(s(θ̂j − θ(P)) ≥ 0

∣∣|θ̂(j) − θ(P)|)
)

+

]
.
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Illustration: Normal means

Suppose θ̂j − 0 ∼ N(0, 0.52), 1 ≤ j ≤ 10. Then

18



Illustration: Quantile Regression

Yi = X⊤
i β0 + ξi ,Xi ∼ N(0, 0.8I3 + 0.211⊤),

FX (t) = 0.5 + 0.5sgn(t)|t|γ , t ∈ [−1, 1].

Figure 2: Illustration of Coverage and Width in Quantile Regression. 19



Pros and Cons

⋆ The procedure needs neither the rate of convergence nor the form of the

limiting distribution.

⋆ For many scale-invariant properties, finite-sample (or distribution-free)

tests can be constructed. This includes central symmetry, angular

symmetry, unimodality at zero, and normality with zero mean.

⋆ Based on the test used for the scale-invariant property, the resulting

confidence sets can have second-order accuracy.

⋆ The disadvantage is that one needs to understand the limiting

distribution of the estimator to conclude the existence of a

scale-invariant property.

⋆ This can be difficult, especially in non-parametric or high-dimensional

problems (e.g., Lasso or non-parametric regression). Even if one knows

the exact limiting distribution, it may not have any scale-invariant

property.
20



Inference II: M-estimation

Problemsa

aJoint work with Kenta Takatsu



M-estimation Inference

⋆ Most functionals encountered in practice can be written as

θ(P) := argmin
θ∈Θ

EP [m(θ,Z )],

for some loss function m(θ,Z ). OLS, Quantile regression, Manski’s

model, MLE are some examples.

⋆ Setting M(θ) = EP [m(θ,Z )], we know that

θ(P) ⊆
{
θ ∈ Θ : M(θ) ≤ M(θ̂)

}
,

for any estimator θ̂ ∈ Θ.

⋆ Of course, the right hand set is not computable based on the data. But

we can construct two sets based on this intuition and prove their

validity.
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M-estimation Inference

⋆ Consider

ĈI
†
n :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤ 0

}
,

ĈIn,α :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤

zα/2σ̂(θ, θ̂1)

n1/2

}
,

(1)

where M̂n(θ) = n−1
∑n

i=1 m(θ,Zi ) and θ̂1 is obtained from an

independent sample, and σ̂(θ, θ̂1) is the sample standard deviation of

m(θ,Zi )−m(θ̂1,Zi ), 1 ≤ i ≤ n.

⋆ Clearly,

ĈI
†
n ⊆ ĈIn,α for any α ∈ (0, 1), n ≥ 1.

⋆ Note that the definition of the confidence sets have no restrictions on Θ

or θ̂1 except for θ̂1 ∈ Θ.

⋆ This idea exists in the operations research literature (Vogel (2008, J. of

Opt.)) where θ̂1 and M̂n(·) are computed on the same data.
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Validity

⋆ For any θ̂1, we have

P(θ(P) /∈ ĈIn,α) ≤ P(θ(P) /∈ ĈI
†
n) ≤ E

[
σ2
P(θ(P), θ̂1)

σ2
P(θ(P), θ̂1) + nC2

P(θ̂1)

]
,

where

σ2
P(θ, θ

′) := Var(m(θ,Z )−m(θ′,Z )),

CP(θ
′) := E[m(θ,Z )]−min

θ∈Θ
E[m(θ,Z )].

⋆ If θ̂1 is consistent for θ(P), then

P(θ(P) /∈ ĈIn,α) ≥ 1− α− o(1) as n → ∞.

⋆ Neither guarantee depends on Θ or the dimension/definition of θ̂1.

⋆ With a slight modification, we can obtain finite sample validity for these

confidence intervals if the loss is bounded (with a known bound).

⋆ Interestingly, we can show that the confidence region ĈIn,α shrinks to a

singleton at the optimal rate. It adapts!! 23



Simple, non-trivial example

⋆ Consider

θ(P) := argmin E[|Y − X⊤θ|2] + h(θ),

where h(·) is some non-stochastic penalty, such as

h(θ) = λ∥θ∥ρρ, ρ ≥ 0 or

{
0, if Aθ ≤ b,

+∞, if Aθ ≰ b

⋆ The OLS would be a penalized/constrained least squares estimator and

can be efficiently computed.

⋆ However, the limiting distribution of the OLS is incomprehensible

because it depends on the derivative of penalty at θ(P) and/or

inequalities that are active at θ(P), i.e., the coordinates j such that

a⊤j θ(P) = bj .

⋆ To my knowledge, no uniformly valid inference procedure exists except

ĈIn,α. Also, note that our procedure does not require a well-specified

linear model.
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Inference III: Z-estimation

Problemsa
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Z-estimation Problems

⋆ Z -estimation problems refer to functionals defined as solutions to

equations:

EP [Ψ(θ(P),Z )] = 0,

for some estimating equation Ψ : Θ⊗Z → Rd (assuming Θ ⊆ Rd).

⋆ In general, we can consider θ(P) defined by a set of moment equalities

and inequalities. Such weakly/partially identified parameters are

common in econometrics.

⋆ For any set A ⊆ Sd−1 = {u ∈ Rd : ∥u∥ = 1}, consider the set

ĈIn,α =

θ ∈ Θ : sup
a∈A

|
∑n

i=1 a
⊤Ψ(θ,Zi )|√∑n

i=1(a
⊤Ψ(θ,Zi ))2

≤ κα

 ,

where κα = κα(A) is the quantile of the maximum of a sequence of

Gaussian random variables.
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Z-estimation Problems

⋆ Validity follows from an application of high-dimensional or

infinite-dimensional CLT, and hence, the validity guarantee is tied to the

“complexity” of A.

⋆ Note that unlike the procedure for M-estimation problem, no pilot

estimator is needed for the construction of the confidence set. In this

respect, this confidence set may be more powerful as it uses all available

data for inference and none for estimation.

⋆ Choosing A to be a singleton has some interesting implications for a

one-dimensional functional of θ(P); e.g., a = Σ̂−1ej for e
⊤
j θ(P).

⋆ In the context of linear regression, with A = {ej , 1 ≤ j ≤ d}, this
confidence set becomes

ĈIn,α =

θ ∈ Rd : max
a∈A

|
∑n

i=1(a
⊤Xi )(Yi − X⊤

i θ)|√∑n
i=1(a

⊤Xi )2(Yi − X⊤
i θ)2

≤ κα

 .

This is valid as long as d = o(n) and has a diameter shrinking as
√
d/n. 26
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Conclusions

⋆ Estimation has received a lot of focus in both regular and irregular

settings.

⋆ Traditionally, the construction of tests or confidence sets is mostly

based on some estimation procedure and its limiting distribution.

⋆ We have discussed three new inference procedures, two of which

completely avoid the study of intricate limiting behavior of the pilot

estimator.

⋆ The validity of all three methods is relatively easy, especially compared

to that of resampling methods.

⋆ Although the methods are not developed with optimality as a goal, all

of them yield optimal adaptive confidence sets.

Thank You!
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