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Introduction to Nonparametric
Regression



Nonparametric Regression: smoothness classes

* Suppose (X, Y) € R? is a random vector and we are interested in
estimating
fo(x) = E[Y|X = x],

the conditional mean.

* Traditional estimators include local averaging, series regression, least
squares, and so on.

* The convergence rates are crucially dependent on the smoothness of fj.
* If fo(+) is known to be a Lipschitz function, then

inf sup Egllfy — fol® = n2/3,
f, fo€Lip



Nonparametric Regression: Shape-constrained classes

* Instead of smoothness, suppose we know fy(+) is monotonically
non-decreasing.

* A natural estimator is the least squares estimator (with no tuning

parameters):
n

fo = argmin Z(Y, — f(X))%

f: non—dec -
i=1

* Here as well, we have

sup  E|fy — fl? < igfsngllﬁ — fol? =< /3,
n 0

fo non—dec

* Additionally, if fy is a constant, then

~ 1
I, — foll* < o (ignoring logarithmic factors.)



Comparison of smoothness and shape-constrained classes

* Shape-constraints are easily interpretable and justifiable in many
applications.

* The minimax rate of convergence does not depend on the smoothness
but more importantly on the metric entropy.

* Metric entropy is log N(e; F) where N(e; F) is the number of e-radius
balls needed to cover a function class.

* We know
log N(g; Lip) = log N(g;non — dec),

which leads to the same minimax rate

* Local geometries are significantly different. For example,

Quadratic + Lipschitz = Lipschitz,

Quadratic 4+ non-dec  #  non-dec.



lllustration of Local Neighborhood in Shape-constrained Class

fi(x) =0.1x? f(x)

1(x>0) f3(x) = fi(x) + f2(x)

Figure 1: The neighborhood of £, cannot contain arbitrarily non-increasing
functions. This implies a smaller metric entropy for the neighborhood of £, in

the class of non-decreasing functions.

Question: Can we use shape-constrained classes to learn smoothness
classes?



New Decomposition Spaces



A Result from Optimization Theory

x Zlobec (2006, Optimization) proved that any twice differentiable
function with a bounded second derivative is convexifiable.

* The underlying principle is very simple and applies to all smoothness
classes.

* If fy is L-Lipschitz, i.e.,
Ifo(x) — f(y)| < Llx —y|, (Think: |f(x)] <L forall xe€R)

then there exists a non-decreasing function gy such that
fo(x) = go(x) — Lx for all x.

x Proof: Consider go(x) = fo(x) + Lx.

g(x)=1f(x)+L>0 forall xeR.



Lipschitz function Linear function Monotonic function




Extension

* Define

C(1) :={g :R — R : g non-decreasing},
Y(1L,L):={fR=R: |f(x)=f(y)| < Llx—y| forall x,ye€ R},
F(1,L):={f : R — R|3g € C(1) such that f(x) = g(x) — Lx ¥V x € R}.
* We have shown X(1,L) C F(1,L). We can also show C(1) C F(1, L).
* We can extend these results to higher-order smoothness. Any function

f:R — R with ||f(®]|,, < L can be decomposed as

xk

f(X) = g(X) - Lkl ?
for a function g that satisfies g(¥)(x) > 0 for all x € R. (k-monotone.)

* We can similarly define interpolation spaces F(k, L) that contain C(k)
and X(k,L).



Estimation Procedure




* Recall
F(1,L) :={f : R — R|3g non-dec f(x) = g(x) — Lx ¥V x € R}.

* This naturally suggests performing least squares on the class of
non-decreasing functions and on L > 0.

>

Such a procedure will always interpolate the data.

* As a remedy, we suggest sample splitting to avoid overfitting. Split
1,2,...,n into two parts Z; and Z,.

>*

For each L > 0,

guim argmin 3 (Yi+ X~ g(X)Y.
g non-dec jcz,

*

Compute
L := argmin Z(Y, + LX; — EL(Xi))2-
L20 ez,
10



lllustration
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Figure 2: Monotone part of f € F(1,L)



lustration

2. low complexity

1.54 /
0.3 1
1.0 1
0.2 1 /
0.1 0.51
0.04 004 /
0.0 0.5 1.0 0.0 0.5 1.0

Figure 3: Functions in F(1,L)



lustration

2. low complexity
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Figure 4: Estimation of functions in F(1,L). Visually, the estimator adapts to
the flat pieces of the monotonic part of f.
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Rates of Convergence and
Adaptivity




What can be expected?

* The least squares estimator on the class of non-decreasing functions
admits adaptive rate of convergence:

2 H2 n—2/3, for arbitrary non-decreasing g,
& — &l =
! /m/n, for g m-piecewise constant.
* Hence, we can expect the following for f € F(1,L):
n=2/3  for arbitrary f € F(1,L),
||?,, —f|I> < {\/m/n, for m-piecewise non-dec f,
\/m/n, for m-piecewise non-dec + linear,

* Note that the third case include f being a linear function, if f(x) + Lx
is a constant (non-decreasing) function.

* Hence, we can expect parametric rates if f € F(1, L) is constant, or
linear or m-piecewise non-decreasing.
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* For theoretical reasons, we restrict the second stage of the estimation
procedure to

Z = arg min Z(Y, + LX; — EL(Xi))zv
LeL i€,

for some bounded set L.
* Let the largest element L of £ satisfy L. = O(log n).
x Define ¢ = Y —E[Y|X], and assume

E[|€9X] < K,, forsome q>2 (Lg)
E[|€]"[X] crt/e forall r>2, (SW,)

IN

* Define

f = argmin ||fy — f||>:  Projection of fy onto F(1,L).
feF(1,L)
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Well-specification: Oracle Inequality

*x If fo € F(1,Ly) and Ly < Ly = O(log n), then

~ log n)*/3 log n)?
|, — fol|? = 0p(1) {( i2/)3 + (nfl/)q } under (Lg).

* Under (SW,,), the second term becomes (log n)?t//n.
* The second term arises from the selection of L.

* Note the dependence on q. If g < 3, the second term dominates.
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Well-specification: Oracle Inequality

*x If fy € F,,(1, Ly) (m-piecewise constant non-doc + linear) and
Lo < Ly = O(log n), then

~ m(log n)? log n)?
I, — K|I° = Op(l){ ( . ) + (nl_l/)q under (Lg).

* Under (SW,,), the second term becomes (log n)?+1//n.
* The second term arises from the selection of L.

* This result implies faster adaptive rates for low-complexity functions,
e.g., constants, linear functions, and so on.
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General Oracle Inequality

* Recall

o~

L := argmin Z(Y, + LX; — 8L(X))?,
Lec i€T

for some bounded set L.

fo— BlI2 <p infl || — K2
I~ 6l <p ngﬁ{ll 7~
Misspecification /Approximation Error

. . log?(nL)
logn)* inf follg —gr|? + o8 1)
i (legal)” 7 <ge'c"m(1) lg — &l + ——
Oracle Inequality for Monotone Function Estimation
n—1t1/q under (L),
+ (Iog n)2 ( q)
(log n)>**/®/n, under (SW,)
Error from Selection of L
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Robust Estimation

*x The bounds obtained depend strongly on g and can prohibit (near)
minimax optimality for small g.

* This can be rectified using robust estimation of the mean in the
selection of the L step.

* Instead of

Z = arg min Z(Y, + LX; — EL(XI'))27
LeL icT,

we consider the median of means

L := arg min max MOMc {(Y; + LX; — &(X)* = (Y + LX; — & (X))} .
LeL

with K = 4[log(card(L))].
* All the previous results are valid as if the errors satisfy (SW,,) with
a=2.

19



Conclusions




Conclusions

* We have introduced new decomposition spaces that are more
interpretable and adaptively estimable than classical smoothness classes.

* Decomposition into monotone and linear pieces allows one to construct
tests for monotonicity, for example.

* Our two-stage estimation method yields near minimax rates
simultaneously for the class of Lipschitz functions, the class of
non-decreasing functions, and also for the class of linear functions.

* Our decomposition methodology can be applied to other nonparametric
settings, such as density estimation, NPIV, and classification problems.

* Multivariate extensions are provided in the paper.
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