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Introduction to Nonparametric

Regression



Nonparametric Regression: smoothness classes

⋆ Suppose (X ,Y ) ∈ R2 is a random vector and we are interested in

estimating

f0(x) = E[Y |X = x ],

the conditional mean.

⋆ Traditional estimators include local averaging, series regression, least

squares, and so on.

⋆ The convergence rates are crucially dependent on the smoothness of f0.

⋆ If f0(·) is known to be a Lipschitz function, then

inf
f̃n

sup
f0∈Lip

Ef0∥f̃n − f0∥2 ≍ n−2/3.
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Nonparametric Regression: Shape-constrained classes

⋆ Instead of smoothness, suppose we know f0(·) is monotonically

non-decreasing.

⋆ A natural estimator is the least squares estimator (with no tuning

parameters):

f̂n := argmin
f : non−dec

n∑
i=1

(Yi − f (Xi ))
2.

⋆ Here as well, we have

sup
f0 non−dec

E∥f̂n − f0∥2 ≍ inf
f̃n

sup
f0

E∥f̃n − f0∥2 ≍ n−2/3.

⋆ Additionally, if f0 is a constant, then

∥f̂n − f0∥2 ≍
1

n
, (ignoring logarithmic factors.)
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Comparison of smoothness and shape-constrained classes

⋆ Shape-constraints are easily interpretable and justifiable in many

applications.

⋆ The minimax rate of convergence does not depend on the smoothness

but more importantly on the metric entropy.

⋆ Metric entropy is logN(ε;F) where N(ε;F) is the number of ε-radius

balls needed to cover a function class.

⋆ We know

logN(ε;Lip) ≍ logN(ε;non− dec),

which leads to the same minimax rate

⋆ Local geometries are significantly different. For example,

Quadratic + Lipschitz = Lipschitz,

Quadratic + non-dec ̸= non-dec.
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Illustration of Local Neighborhood in Shape-constrained Class

Figure 1: The neighborhood of f2 cannot contain arbitrarily non-increasing

functions. This implies a smaller metric entropy for the neighborhood of f2 in

the class of non-decreasing functions.

Question: Can we use shape-constrained classes to learn smoothness

classes?
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New Decomposition Spaces



A Result from Optimization Theory

⋆ Zlobec (2006, Optimization) proved that any twice differentiable

function with a bounded second derivative is convexifiable.

⋆ The underlying principle is very simple and applies to all smoothness

classes.

⋆ If f0 is L-Lipschitz, i.e.,

|f0(x)− f0(y)| ≤ L|x − y |, (Think: |f ′0 (x)| ≤ L for all x ∈ R)

then there exists a non-decreasing function g0 such that

f0(x) = g0(x)− Lx for all x .

⋆ Proof: Consider g0(x) = f0(x) + Lx .

g ′
0(x) = f ′0 (x) + L ≥ 0 for all x ∈ R.
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Illustration
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Extension

⋆ Define

C(1) := {g : R → R : g non-decreasing},
Σ(1, L) := {f : R → R : |f (x)− f (y)| ≤ L|x − y | for all x , y ∈ R},
F(1, L) := {f : R → R| ∃g ∈ C(1) such that f (x) = g(x)− Lx ∀ x ∈ R}.

⋆ We have shown Σ(1, L) ⊆ F(1, L). We can also show C(1) ⊆ F(1, L).

⋆ We can extend these results to higher-order smoothness. Any function

f : R → R with ∥f (k)∥∞ ≤ L can be decomposed as

f (x) = g(x)− L
xk

k!
,

for a function g that satisfies g (k)(x) ≥ 0 for all x ∈ R. (k-monotone.)

⋆ We can similarly define interpolation spaces F(k , L) that contain C(k)
and Σ(k, L).
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Estimation Procedure



Estimation

⋆ Recall

F(1, L) := {f : R → R| ∃g non-dec f (x) = g(x)− Lx ∀ x ∈ R}.

⋆ This naturally suggests performing least squares on the class of

non-decreasing functions and on L ≥ 0.

⋆ Such a procedure will always interpolate the data.

⋆ As a remedy, we suggest sample splitting to avoid overfitting. Split

1, 2, . . . , n into two parts I1 and I2.

⋆ For each L ≥ 0,

ĝL := argmin
g non-dec

∑
i∈I1

(Yi + LXi − g(Xi ))
2.

⋆ Compute

L̂ := argmin
L≥0

∑
i∈I2

(Yi + LXi − ĝL(Xi ))
2.
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Illustration

Figure 2: Monotone part of f ∈ F(1, L)
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Illustration

Figure 3: Functions in F(1, L)
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Illustration

Figure 4: Estimation of functions in F(1, L). Visually, the estimator adapts to

the flat pieces of the monotonic part of f .
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Rates of Convergence and

Adaptivity



What can be expected?

⋆ The least squares estimator on the class of non-decreasing functions

admits adaptive rate of convergence:

∥ĝn − g∥2 ≍

{
n−2/3, for arbitrary non-decreasing g,√
m/n, for g m-piecewise constant.

⋆ Hence, we can expect the following for f ∈ F(1, L):

∥f̂n − f ∥2 ≍


n−2/3, for arbitrary f ∈ F(1, L),√
m/n, for m-piecewise non-dec f ,√
m/n, for m-piecewise non-dec + linear,

⋆ Note that the third case include f being a linear function, if f (x) + Lx

is a constant (non-decreasing) function.

⋆ Hence, we can expect parametric rates if f ∈ F(1, L) is constant, or

linear or m-piecewise non-decreasing.
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Assumptions

⋆ For theoretical reasons, we restrict the second stage of the estimation

procedure to

L̂ := argmin
L∈L

∑
i∈I2

(Yi + LXi − ĝL(Xi ))
2,

for some bounded set L.

⋆ Let the largest element L+ of L satisfy L+ = O(log n).

⋆ Define ξ = Y − E[Y |X ], and assume

E[|ξ|q|X ] ≤ Kq, for some q ≥ 2 (Lq)

E[|ξ|r |X ] ≤ Cr1/α for all r ≥ 2, (SWα)

⋆ Define

f ∗L = argmin
f∈F(1,L)

∥f0 − f ∥2 : Projection of f0 onto F(1, L).
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Well-specification: Oracle Inequality

⋆ If f0 ∈ F(1, L0) and L0 ≤ L+ = O(log n), then

∥f̂n − f0∥2 = Op(1)

{
(log n)4/3

n2/3
+

(log n)2

n1−1/q

}
under (Lq).

⋆ Under (SWα), the second term becomes (log n)2+1/α/n.

⋆ The second term arises from the selection of L.

⋆ Note the dependence on q. If q < 3, the second term dominates.
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Well-specification: Oracle Inequality

⋆ If f0 ∈ Fm(1, L0) (m-piecewise constant non-doc + linear) and

L0 ≤ L+ = O(log n), then

∥f̂n − f0∥2 = Op(1)

{
m(log n)2

n
+

(log n)2

n1−1/q

}
under (Lq).

⋆ Under (SWα), the second term becomes (log n)2+1/α/n.

⋆ The second term arises from the selection of L.

⋆ This result implies faster adaptive rates for low-complexity functions,

e.g., constants, linear functions, and so on.
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General Oracle Inequality

⋆ Recall

L̂ := argmin
L∈L

∑
i∈I2

(Yi + LXi − ĝL(Xi ))
2,

for some bounded set L.

∥f̂n − f0∥2 ≲P inf
L∈L

{
∥f ∗L − f0∥2

Misspecification/Approximation Error

+ (log n)4 inf
1≤m≤n

(
inf

g∈Cm(1)
∥g − g∗

L ∥2 +
m log2(nL)

n

)}
Oracle Inequality for Monotone Function Estimation

+ (log n)2

{
n−1+1/q, under (Lq),

(log n)2+1/α/n, under (SWq)

Error from Selection of L
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Robust Estimation

⋆ The bounds obtained depend strongly on q and can prohibit (near)

minimax optimality for small q.

⋆ This can be rectified using robust estimation of the mean in the

selection of the L step.

⋆ Instead of

L̂ := argmin
L∈L

∑
i∈I2

(Yi + LXi − ĝL(Xi ))
2,

we consider the median of means

L̂ := argmin
L∈L

max
L′∈L

MOMK

{
(Yi + LXi − ĝL(Xi ))

2 − (Yi + LXi − ĝL′(Xi ))
2
}
,

with K = 4⌈log(card(L))⌉.

⋆ All the previous results are valid as if the errors satisfy (SWα) with

α = 2.
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Conclusions



Conclusions

⋆ We have introduced new decomposition spaces that are more

interpretable and adaptively estimable than classical smoothness classes.

⋆ Decomposition into monotone and linear pieces allows one to construct

tests for monotonicity, for example.

⋆ Our two-stage estimation method yields near minimax rates

simultaneously for the class of Lipschitz functions, the class of

non-decreasing functions, and also for the class of linear functions.

⋆ Our decomposition methodology can be applied to other nonparametric

settings, such as density estimation, NPIV, and classification problems.

⋆ Multivariate extensions are provided in the paper.
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