Locally adaptive nonparametric regression through shape-constrained classes

Smoothness versus shape

Arun Kumar Kuchibhotla

15 July, 2025

Carnegie Mellon University

Collaborators

Kenta Takatsu (CMU) Tianyu Zhang (CMU/UCSD)

This research was supported by NSF-DMS-2210662. Available at ArXiv:2307.05732.

Table of contents

- 1. Introduction to Nonparametric Regression
- 2. New Decomposition Spaces
- 3. Estimation Procedure
- 4. Rates of Convergence and Adaptivity
- 5. Conclusions

Introduction to Nonparametric

Regression

Nonparametric Regression: smoothness classes

★ Suppose $(X, Y) \in \mathbb{R}^2$ is a random vector and we are interested in estimating

$$f_0(x) = \mathbb{E}[Y|X=x],$$

the conditional mean.

- * Traditional estimators include local averaging, series regression, least squares, and so on.
- \star The convergence rates are crucially dependent on the smoothness of f_0 .
- \star If $f_0(\cdot)$ is known to be a Lipschitz function, then

$$\inf_{\widetilde{f}_n}\sup_{f_0\in \mathrm{Lip}}\mathbb{E}_{f_0}\|\widetilde{f}_n-f_0\|^2\asymp n^{-2/3}.$$

3

Nonparametric Regression: Shape-constrained classes

- * Instead of smoothness, suppose we know $f_0(\cdot)$ is monotonically non-decreasing.
- * A natural estimator is the least squares estimator (with no tuning parameters):

$$\widehat{f}_n := \operatorname*{arg\,min}_{f \colon \text{non-dec}} \sum_{i=1}^n (Y_i - f(X_i))^2.$$

* Here as well, we have

$$\sup_{f_0 \ \mathrm{non-dec}} \mathbb{E} \|\widehat{f_n} - f_0\|^2 \asymp \inf_{\widetilde{f_n}} \sup_{f_0} \mathbb{E} \|\widetilde{f_n} - f_0\|^2 \asymp n^{-2/3}.$$

 \star Additionally, if f_0 is a constant, then

$$\|\widehat{f_n} - f_0\|^2 \approx \frac{1}{n}$$
, (ignoring logarithmic factors.)

4

Comparison of smoothness and shape-constrained classes

- Shape-constraints are easily interpretable and justifiable in many applications.
- * The minimax rate of convergence does not depend on the smoothness but more importantly on the metric entropy.
- * Metric entropy is $\log N(\varepsilon; \mathcal{F})$ where $N(\varepsilon; \mathcal{F})$ is the number of ε -radius balls needed to cover a function class.
- * We know

$$\log N(\varepsilon; \text{Lip}) \approx \log N(\varepsilon; \text{non} - \text{dec}),$$

which leads to the same minimax rate

* Local geometries are significantly different. For example,

$$\begin{array}{lll} \mathsf{Quadratic} + \mathsf{Lipschitz} &=& \mathsf{Lipschitz}, \\ \mathsf{Quadratic} + \mathsf{non\text{-}dec} & \neq & \mathsf{non\text{-}dec}. \end{array}$$

Illustration of Local Neighborhood in Shape-constrained Class

Figure 1: The neighborhood of f_2 cannot contain arbitrarily non-increasing functions. This implies a smaller metric entropy for the neighborhood of f_2 in the class of non-decreasing functions.

Question: Can we use shape-constrained classes to learn smoothness classes?

New Decomposition Spaces

A Result from Optimization Theory

- * Zlobec (2006, Optimization) proved that any twice differentiable function with a bounded second derivative is convexifiable.
- * The underlying principle is very simple and applies to all smoothness classes.
- \star If f_0 is L-Lipschitz, i.e.,

$$|f_0(x) - f_0(y)| \le L|x - y|$$
, (Think: $|f_0'(x)| \le L$ for all $x \in \mathbb{R}$)

then there exists a non-decreasing function g_0 such that $f_0(x) = g_0(x) - Lx$ for all x.

* **Proof:** Consider $g_0(x) = f_0(x) + Lx$.

$$g_0'(x) = f_0'(x) + L \ge 0$$
 for all $x \in \mathbb{R}$.

Extension

* Define

$$\begin{split} \mathcal{C}(1) &:= \{g: \mathbb{R} \to \mathbb{R}: \ g \ \text{non-decreasing}\}, \\ \Sigma(1,L) &:= \{f: \mathbb{R} \to \mathbb{R}: \ |f(x) - f(y)| \leq L|x-y| \quad \text{for all} \quad x,y \in \mathbb{R}\}, \\ \mathcal{F}(1,L) &:= \{f: \mathbb{R} \to \mathbb{R}| \ \exists g \in \mathcal{C}(1) \ \text{such that} \ f(x) = g(x) - Lx \ \forall \ x \in \mathbb{R}\}. \end{split}$$

- * We have shown $\Sigma(1,L) \subseteq \mathcal{F}(1,L)$. We can also show $\mathcal{C}(1) \subseteq \mathcal{F}(1,L)$.
- * We can extend these results to higher-order smoothness. Any function $f: \mathbb{R} \to \mathbb{R}$ with $\|f^{(k)}\|_{\infty} \leq L$ can be decomposed as

$$f(x) = g(x) - L\frac{x^k}{k!},$$

for a function g that satisfies $g^{(k)}(x) \ge 0$ for all $x \in \mathbb{R}$. (k-monotone.)

* We can similarly define interpolation spaces $\mathcal{F}(k,L)$ that contain $\mathcal{C}(k)$ and $\Sigma(k,L)$.

Estimation Procedure

Estimation

* Recall

$$\mathcal{F}(1,L) := \{ f : \mathbb{R} \to \mathbb{R} | \exists g \text{ non-dec } f(x) = g(x) - Lx \ \forall \ x \in \mathbb{R} \}.$$

- \star This naturally suggests performing least squares on the class of non-decreasing functions and on $L \ge 0$.
- * Such a procedure will always interpolate the data.
- \star As a remedy, we suggest sample splitting to avoid overfitting. Split $1,2,\ldots,n$ into two parts \mathcal{I}_1 and \mathcal{I}_2 .
- * For each $L \ge 0$,

$$\widehat{g}_L := \mathop{\mathsf{arg\,min}}_{g \ \mathsf{non-dec}} \sum_{i \in \mathcal{I}_1} (Y_i + LX_i - g(X_i))^2.$$

* Compute

$$\widehat{L} := \underset{L \geq 0}{\text{arg min}} \sum_{i \in \mathcal{I}_2} (Y_i + LX_i - \widehat{g}_L(X_i))^2.$$

Figure 2: Monotone part of $f \in \mathcal{F}(1,L)$

Figure 3: Functions in $\mathcal{F}(1,L)$

Figure 4: Estimation of functions in $\mathcal{F}(1, L)$. Visually, the estimator adapts to the flat pieces of the monotonic part of f.

Rates of Convergence and

Adaptivity

What can be expected?

★ The least squares estimator on the class of non-decreasing functions admits adaptive rate of convergence:

$$\|\widehat{g}_n - g\|^2 \asymp \begin{cases} n^{-2/3}, & \text{for arbitrary non-decreasing g,} \\ \sqrt{m/n}, & \text{for } g \text{ m-piecewise constant.} \end{cases}$$

★ Hence, we can *expect* the following for $f \in \mathcal{F}(1, L)$:

$$\|\widehat{f_n} - f\|^2 \ \asymp \ \begin{cases} n^{-2/3}, & \text{for arbitrary } f \in \mathcal{F}(1,L), \\ \sqrt{m/n}, & \text{for m-piecewise non-dec } f, \\ \sqrt{m/n}, & \text{for m-piecewise non-dec } + \text{linear,} \end{cases}$$

- * Note that the third case include f being a linear function, if f(x) + Lx is a constant (non-decreasing) function.
- * Hence, we can expect parametric rates if $f \in \mathcal{F}(1, L)$ is constant, or linear or m-piecewise non-decreasing.

Assumptions

 \star For theoretical reasons, we restrict the second stage of the estimation procedure to

$$\widehat{L} := \underset{L \in \mathcal{L}}{\text{arg min}} \ \sum_{i \in \mathcal{I}_2} (Y_i + LX_i - \widehat{g}_L(X_i))^2,$$

for some bounded set \mathcal{L} .

- \star Let the largest element L_+ of $\mathcal L$ satisfy $L_+ = O(\log n)$.
- \star Define $\xi = Y \mathbb{E}[Y|X]$, and assume

$$\mathbb{E}[|\xi|^{q}|X] \leq K_{q}, \quad \text{for some} \quad q \geq 2$$

$$\mathbb{E}[|\xi|^{r}|X] \leq Cr^{1/\alpha} \quad \text{for all} \quad r \geq 2,$$

$$(SW_{\alpha})$$

* Define

$$f_L^* = \underset{f \in \mathcal{F}(1,L)}{\min} \|f_0 - f\|^2$$
: Projection of f_0 onto $\mathcal{F}(1,L)$.

Well-specification: Oracle Inequality

* If
$$f_0 \in \mathcal{F}(1, L_0)$$
 and $L_0 \leq L_+ = O(\log n)$, then

$$\|\widehat{f}_n - f_0\|^2 = O_p(1) \left\{ \frac{(\log n)^{4/3}}{n^{2/3}} + \frac{(\log n)^2}{n^{1-1/q}} \right\} \quad \text{under} \quad (L_q).$$

- \star Under (SW $_{\alpha}$), the second term becomes (log n) $^{2+1/\alpha}/n$.
- \star The second term arises from the selection of L.
- \star Note the dependence on q. If q < 3, the second term dominates.

Well-specification: Oracle Inequality

* If $f_0 \in \mathcal{F}_m(1, L_0)$ (*m*-piecewise constant non-doc + linear) and $L_0 \le L_+ = O(\log n)$, then

$$\|\widehat{f_n} - f_0\|^2 = O_p(1) \left\{ \frac{m(\log n)^2}{n} + \frac{(\log n)^2}{n^{1-1/q}} \right\}$$
 under (L_q) .

- \star Under (SW $_{\alpha}$), the second term becomes (log n)^{2+1/ α}/n.
- \star The second term arises from the selection of L.
- This result implies faster adaptive rates for low-complexity functions, e.g., constants, linear functions, and so on.

General Oracle Inequality

* Recall

$$\widehat{L} := \underset{L \in \mathcal{L}}{\text{arg min}} \ \sum_{i \in \mathcal{I}_2} (Y_i + L X_i - \widehat{g}_L(X_i))^2,$$

for some bounded set \mathcal{L} .

$$\|\widehat{f}_n - f_0\|^2 \lesssim_P \inf_{L \in \mathcal{L}} \left\{ \|f_L^* - f_0\|^2 \right\}$$

Misspecification/Approximation Error

$$+ (\log n)^4 \inf_{1 \leq m \leq n} \left(\inf_{g \in \mathcal{C}_m(1)} \|g - g_L^*\|^2 + \frac{m \log^2(nL)}{n} \right) \right\}$$

Oracle Inequality for Monotone Function Estimation

$$+ (\log n)^2 \begin{cases} n^{-1+1/q}, & \text{under } (L_q), \\ (\log n)^{2+1/\alpha}/n, & \text{under } (SW_q) \end{cases}$$

Error from Selection of L

Robust Estimation

- * The bounds obtained depend strongly on q and can prohibit (near) minimax optimality for small q.
- \star This can be rectified using robust estimation of the mean in the selection of the L step.
- * Instead of

$$\widehat{L} := \underset{L \in \mathcal{L}}{\text{arg min}} \sum_{i \in \mathcal{I}_2} (Y_i + LX_i - \widehat{g}_L(X_i))^2,$$

we consider the median of means

$$\widehat{L} := \mathop{\arg\min\max}_{L \in \mathcal{L}} \mathop{\mathsf{MOM}}_{\mathcal{K}} \left\{ (Y_i + LX_i - \widehat{g}_L(X_i))^2 - (Y_i + LX_i - \widehat{g}_{L'}(X_i))^2 \right\},$$

with $K = 4\lceil \log(\operatorname{card}(\mathcal{L})) \rceil$.

* All the previous results are valid as if the errors satisfy (SW $_{\alpha}$) with $\alpha=2$.

Conclusions

Conclusions

- We have introduced new decomposition spaces that are more interpretable and adaptively estimable than classical smoothness classes.
- * Decomposition into monotone and linear pieces allows one to construct tests for monotonicity, for example.
- Our two-stage estimation method yields near minimax rates simultaneously for the class of Lipschitz functions, the class of non-decreasing functions, and also for the class of linear functions.
- * Our decomposition methodology can be applied to other nonparametric settings, such as density estimation, NPIV, and classification problems.
- * Multivariate extensions are provided in the paper.