
Valid Post-selection Inference in Model-free
Linear Regressiona

Arun Kumar Kuchibhotla
14 Decemeber, 2019

The Wharton School,
University of Pennsylvania.

aJoint work with Larry Brown, Andreas Buja, Junhui Cai, Ed George and Linda Zhao



Table of contents

1. Invalidity of Classical Inference

2. Formulation of the Problem

3. Three Solutions

4. Theoretical and Numerical Comparison

1



Invalidity of Classical Inference



Data snooping is an integral part of data analysis.

For regression analysis, variable selection is a result of such snooping.

Classical inference after such variable selection can be misleading.
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Example: Invalidity of classical inference under selection

Generate 500 observations from (X ,Y ) ∼ N(0, Ip+1). (Y ⊥ X)

Select one covariate X̂j that is most correlated with Y .

Coverage of classical 95% confidence interval
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Example: Invalidity of classical inference under selection

Generate 500 observations from (X ,Y ) ∼ N(0, Ip+1). (Y ⊥ X)

Select one covariate X̂j that is most correlated with Y .

Coverage of classical 95% confidence interval
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Example: Invalidity of classical inference under selection

Generate 500 observations from (X ,Y ) ∼ N(0, Ip+1). (Y ⊥ X)

Select one covariate X̂j that is most correlated with Y .

Coverage of classical 95% confidence interval.
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Summary

Unadjusted classical inference can be very misleading.

Duality of confidence intervals and testing implies that classical tests may
not control Type I error.

It does not require a pathological selection to invalidate classical
inference.

Forward selection is a conventional variable selection strategy and is very
commonly taught in basic courses.

6



Formulation of the Problem



There are p hypotheses to start with

H0,j : corr(Y ,Xj) = 0, for 1 ≤ j ≤ p.

Equivalently,
H0,j : βj = 0, for 1 ≤ j ≤ p,

where
(αj , βj) := argmin

(α,β)

E
[
(Y − α− βXj)

2] .

Select a ĵ ∈ {1, 2, . . . , p} based on the data.

Test the hypothesis H0,̂j .

Classical (invalid) test:

Reject H0,̂j if |t ĵ | :=
n1/2|β̂ ĵ |

σ̂ ĵ
≤ 1.96.
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σ̂ ĵ
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The General PoSI Problem

For each model M ⊆ {1, 2, . . . , p}, define the OLS target as

βM := argmin
θ∈R|M|

E
[
(Y − X>

Mθ)2] .
Fix k: 1 ≤ k ≤ p. Construct confidence regions ĈI ĵ·M̂ such that

lim inf
n→∞

P
(
β ĵ·M̂ ∈ ĈI ĵ·M̂

)
≥ 1 − α,

for any model M̂ (of size at most k) and ĵ ∈ M̂, irrespective of how it is
chosen.
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Simultaneous Inference ⇒ Post-selection Inference
(FWER Control)

P

 ⋂
|M|≤k
j∈M

{
βj·M ∈ ĈIj·M

} ≤ inf
ĵ∈M̂

P
(
β ĵ·M̂ ∈ ĈI ĵ·M̂

)
.

Theorem: FWER control is necessary for valid PoSI.
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Three Solutions



A (Very) Simple Solution

Apply Bonferroni procedure.

P

 ⋂
|M|≤k
j∈M

{
βj·M ∈ ĈIj·M

} ≥ 1 −
∑

|M|≤k,
j∈M

P
(
βj·M ∈ ĈIj·M

)
.

How many elements in the sum?∑
|M|≤k,

j∈M

1 =
k∑

s=1
s
(

p
s

)
�

(ep
k

)k
.

Construct 1 − α

(ep/k)k confidence intervals for individual coefficients.

Can be very conservative.
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Second Simple Solution

For simultaneous inference, inflate the interval to

ĈIj·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ Kα

}
,

with Kα, the (1 − α) quantile of

max
|M|≤k, j∈M

∣∣∣∣∣n1/2(β̂j·M − βj·M)

σ̂j·M

∣∣∣∣∣ .
Accounts for dependence.
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Disadvantage of these Solutions

Bonferroni Solution:

ĈI
Bonf
j·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ zα/(2(ep/k)k)

}
.

PoSI Solution:

ĈI
PoSI
j·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ Kα

}
.

Kα usually grows with largest model size k.

Say, k = 20, then

width of intervals for model of size 2
≈

width of intervals for model of size 20.
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The Third Solution



Define

(OLS Estimator) β̂M := argmin
θ∈R|M|

1
n

n∑
i=1

(Yi − X>
i,Mθ)2,

(OLS Target) βM := argmin
θ∈R|M|

1
n

n∑
i=1

E
[
(Yi − X>

i,Mθ)2] .
For any M ⊆ {1, 2, . . . , p}, consider the confidence region

ĈI
UPoSI*
M :=

{
θ ∈ R|M| : ‖Σ̂M(β̂M − θ)‖∞ ≤ Cxy (α) + Cxx(α)‖θ‖1

}
.

Then for any model M̂ chosen based on the data,

P
(
βM̂ ∈ ĈI

UPoSI*
M̂

)
≥ 1 − α,

if Cxy (α) and Cxx(α) denote the (1 − α) joint quantiles of∥∥∥∥∥1
n

n∑
i=1

{XiYi − E[XiYi ]}

∥∥∥∥∥
∞

and

∥∥∥∥∥1
n

n∑
i=1

{XiX>
i − E[XiX>

i ]}

∥∥∥∥∥
∞

.
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Idea of the Proof

For any model M, the OLS estimator is

β̂M := argmin
θ∈R|M|

1
n

n∑
i=1

(Yi−X>
i,Mθ)2 ≡ 1

n

n∑
i=1

Xi,M

(
Yi − X>

i,Mβ̂M

)
= 0.

Adding and subtracting βM leads to

Σ̂M(β̂M − βM) =
1
n

n∑
i=1

Xi,M(Yi − X>
i,MβM)

=
1
n

n∑
i=1

{
Xi,M(Yi − X>

i,MβM)− E[Xi,M(Yi − X>
i,MβM)]

}
,

Thus,

‖Σ̂M(β̂M−βM)‖∞ ≤

∥∥∥∥∥1
n

n∑
i=1

(XiYi − E[XiYi ])

∥∥∥∥∥
∞

+ |||Σ̂− Σ|||∞‖βM‖1,

for all models M ⊆ {1, 2, . . . , p}. 14



Further if the observations are independent and ‖Xi‖∞ has finite second
moment, then for any random model M̂ with |M̂| = op(

√
n/ log p),

lim inf
n→∞

P
(
βM̂ ∈ ĈI

UPoSI
M̂

)
≥ 1 − α,

where for any model M,

ĈI
UPoSI
M :=

{
θ ∈ R|M| : ‖Σ̂M(β̂M − θ)‖∞ ≤ Cxy (α) + Cxx(α)‖β̂M‖1

}
.

• These confidence regions are not rectangles but are parallelepipeds.

• It is fairly trivial to project these regions to get confidence intervals
for βj·M̂.

• Calculating ĈIM̂ only requires computing β̂M̂, Cxx(α) and Cxy (α).

• Computational cost: O(p2) times the number of bootstrap samples.
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Theoretical and Numerical
Comparison



Comparison of Volumes

Reference Leb(ĈIM̂) Design

Kuchibhotla et al. (2019)
(log p/n)|M̂|/2 fixed

(|M̂| log p/n)|M̂|/2 random

Berk et al. (2013)

Bachoc et al. (2019)

Kuchibhotla et al. (2018)

(k log(ep/k)/n)|M̂|/2 fixed/random

Taylor and Co. (2016+) Infinite fixed/random

Table 1: Volumes of Different PoSI Regions.
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Simulations

Setting:

Y = Xβ0 + ξ, where β0 = 0p , ξ ∼ N(0, In).

We consider fixed covariates with following designs:

• Orthogonal design:
X>X

n = Σ̂ = Ip .

• Equicorrelation design:

Σ̂ = Ip + α1p1>
p with α = − 1

(p + 2) .

• Wors-case design:

Σ̂ =

[
Ip−1 c1p−1

0>
p−1

√
1 − (p − 1)c2

]
, with c2 =

1
2(p − 1) .
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Comparison with PoSI: max-t statistic

200 observations and 15 covariates.
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Comparison with Selective Inference: Forward Stepwise

1000 observations and 500 covariates.
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Comparison with Sample Splitting: Forward Stepwise

1000 observations and 500 covariates.
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Conclusions

Provided a computationally efficient post-selection inference for linear
regression.

The proposed regions have better volume properties than existing
alternatives.

Does not require any of the classical linear modeling assumptions.

Works for dependent observations as well.

Crucial ingredient: Bootstrap for estimating quantiles.

Reference: Kuchibhotla et al. (2019) Valid Post-selection Inference in
Model-free Linear Regression, Annals of Statistics. Forthcoming.
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