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Some History of PoSI
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Some History

In applied statistics, a formal model is built after a thorough
exploration of data.

Reproducibility/replicability crisis in science is sometimes
attributed to this type of data analysis.

Model Selection/Cherry-picking makes classical statistical
inference methods invalid.

Berk et al. (2013) provided valid statistical inference for
Gauss-Markov linear model under arbitrary variable selection.

However, model misspecifcation also makes classical statistical
inference methods invalid.
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Some History

The practice of data analysis often involves exploring the data
thoroughly before a formal modeling begins. EDA is an example.
Reproducibility/replicability crisis in science is sometimes
attributed to this type of data analysis.
Model Selection/Cherry-picking makes classical statistical
inference methods invalid.
Berk et al. (2013) provided valid statistical inference for
Gauss-Markov linear model under arbitrary variable selection.
However, model misspecification also makes classical statistical
inference methods invalid.

Wanted: Valid inference under misspecification and
model selection!
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The “PoSI” Solution of Berk et al. (2013): Simultaneity

PoSI Procedure — general version:
Define a universeM of models M you might ever consider/select:
outcomes (Y ), regressors (X ), their transforms (f (X ),g(Y )), ...

Define the universe of all tests you might ever perform in these
models, typically for regression coeffs βj,M (j ’th coeff in model M).

Consider the maximum of the test statistics for all these tests:
Obtain its 0.05 critical value C0.05 for simultaneity adjustment.

Now freely examine your data and select models M̂ ∈M,
reconsider, re-select, re-reconsider, ... but compare all statistics
against C0.05, for 0.05M-simultaneity control.

Cost-Benefit Analysis:
Cost: Huge computation upfront — adjustment for millions of tests

Benefits: Solution to the circularity problem — select model M̂,
don’t like it, select M̂ ′, don’t like it, ... PoSI inference remains valid.
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Equivalence of PoSI and Simultaneous Inference

For any set of functionals {θM : M ∈M} and confidence regions
{R̂M : M ∈M}, it is clear that for any M̂ ∈M,

P
(
θM̂ ∈ R̂M̂

)
≥ P

( ⋂
M∈M

{θM ∈ R̂M}

)
,

Post-selection Inf. ⇐ Simultaneous Inf.

We have proved (Kuchibhotla et al. (2018a)) that

inf
M̂∈M

P
(
θM̂ ∈ R̂M̂

)
= P

( ⋂
M∈M

{θM ∈ R̂M}

)
,

Post-selection Inf. ⇔ Simultaneous Inf.

Thus, simultaneous inference is necessary and sufficient for PoSI.
All our methods aim for simultaneous inference.
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Computationally Efficient PoSI for OLS
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Notation

Suppose (Xi ,Yi) ∈ Rp × R,1 ≤ i ≤ n are observations that
constitute regression data.
Let the data matrices be

X =


X1
X2
...

Xn

 ∈ Rn×p and Y =


Y1
Y2
...

Yn

 ∈ Rn.

For any 1 ≤ k ≤ p, let

M(k) := {M ⊆ {1,2, . . . ,p} : 1 ≤ |M| ≤ k},

represent the set of k -sparse models.
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Notation Contd.

The OLS least squares estimator based on (X(M),Y) is given by

β̂M = (X>MXM)−1(XMY).

The OLS least squares target based on (X(M),Y) is given by

βM = (E[X>MXM ])−1(E[XMY])

Let Cxx (α),Cxy (α) be such that with probability 1− α,{∣∣∣∣∣∣∣∣∣∣∣∣X>X− E[X>X]

n

∣∣∣∣∣∣∣∣∣∣∣∣
∞
≤ Cxx (α) &

∥∥∥∥XY− E[XY]

n

∥∥∥∥
∞
≤ Cxy (α)

}
,

holds. Hence, Cxx (α),Cxy (α) denote the quantiles of the joint
distribution.
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Computationally Efficient Valid PoSI

Consider for any M ⊆ {1,2, . . . ,p}, the region

R̂M :=
{
θ ∈ R|M| : ‖Σ̂n,M(β̂M − θ)‖∞ ≤ Cxy(α) + Cxx(α)‖β̂M‖1

}
,

where Σ̂n,M := X>MXM/n.
For independent or functionally dependent sub-Gaussian
observations, if k = o(

√
n/ log p), then

lim inf
n→∞

P

 ⋂
M∈M(k)

{
βM ∈ R̂M

} ≥ 1− α. (Valid PoSI)

These are polyhedral confidence regions parallelepiped in shape.
Under above conditions, as n→∞,

max {Cxx (α),Cxy (α)} = O

(√
log p

n

)
.
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Computation

To compute the confidence region R̂M̂ for a model M̂, we only
need to compute

Σ̂n,M̂ , β̂M̂ , Cxx (α),Cxy (α).

The first two are readily available for computations leading to β̂M̂ .

The last two do not depend on M̂ and only require computations
of order p2; under independence they are obtained by generating∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣1n

n∑
i=1

Zi(XiX>i − Σ̂n)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

and

∥∥∥∥∥1
n

n∑
i=1

Zi(XiYi − Ave(XY ))

∥∥∥∥∥
∞

,

where Z1, . . . ,Zn
iid∼ N(0,1). This is called Multiplier Bootstrap.

Bootstrap asymptotics require log5 p = o(n).
A similar bootstrap works under functional dependence.
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Lebesgue Measures

The PoSI guarantee does not require observations to be identically
distributed; so covers the case of fixed design.

Reference Leb(R̂M̂) Design

Kuchibhotla et al. (2018a)
(log p/n)|M̂|/2 fixed design
(|M̂| log p/n)|M̂|/2 random design

Berk et al. (2013)
Bachoc et al. (2016)
Kuchibhotla et al. (2018b)

(k log p/n)|M̂|/2 fixed/random
design

Taylor and Co. (2016+) Infinite
fixed/random
design

Table: Lebesgue Measures of Different PoSI Regions over models M ∈M(k).
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Statistically Tight PoSI for OLS
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Uniform-in-submodel Result for OLS

If Zi := (Xi ,Yi) are sub-Gaussian, then the results of Kuchibhotla et al.
(2018b) imply that for any 1 ≤ k ≤ p,

max
|M|≤k

∥∥∥β̂M − βM

∥∥∥
2

= Op

(√
k log(ep/k)

n

)
,

and

max
|M|≤k

∥∥∥∥∥√n
(
β̂M − βM

)
− 1√

n

n∑
i=1

ψM(Zi)

∥∥∥∥∥
2

= Op

(
k log(ep/k)√

n

)
,

where
ψM(Zi) := Σ−1

M Xi,M(Yi − X>i,MβM).

Recall

ΣM = E
[

X>MXM

n

]
and βM := Σ−1

M E
[

XMY
n

]
.
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Implications for PoSI

These results imply that if k log(ep/k) = o(
√

n), then as n→∞,
simultaneously for all |M| ≤ k ,

√
n
(
β̂M − βM

)
≈ 1√

n

n∑
i=1

ψM(Zi).

This implies one can apply bootstrap to estimate quantiles of the
“max-|t|” statistic:

max-|t| := max
|M|≤k , j∈M

∣∣∣∣∣
√

n(β̂M(j)− βM(j))

σ̂M(j)

∣∣∣∣∣ .
Here σ̂M(j) represents an estimate of the standard error.

This leads to an asymptotically tight PoSI in that there exists a
model selection procedure for which smaller confidence regions
are invalid.
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Conclusions
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Conclusions

We have provided post-selection inference allowing for increasing
number of models for OLS linear regression.

Based on the Gaussian approximation results, we have
constructed and implemented two different PoSI regions.

The first set of regions are computationally efficient: log p = o(n
1
5 ).

The second set of regions are statistically tight: k log(ep
k ) = o(n

1
5 ).

Approximate (heuristic) methods for statistically tight regions are
under study.

Similar results holds for a large class of M-estimators and the
methodology readily allows for explorations other than variable
selection like transformations.
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