Recent Developments in Post-selection Inference (from Larry's Group)¹

Arun Kumar Kuchibhotla

Department of Statistics University of Pennsylvania

30 November 2018

¹Joint work with "Larry's Group" at Wharton, including Larry Brown, Edward George, Linda Zhao and Junhui Cai.

Arun, Larry's Group (UPenn)

Developments in PoSI

LAWRENCE D. BROWN 1940 – 2018.

Arun, Larry's Group (UPenn)

Developments in PoSI

э

・ロト ・ 四ト ・ ヨト ・ ヨト

- 2 Computationally Efficient PoSI for OLS
- 3 Statistically Tight PoSI for OLS
- 4 Conclusions

< 47 ▶

Some History of PoSI

Arun, Larry's Group (UPenn)

Developments in PoSI

30 November 2018 4 / 20

크

イロト イヨト イヨト イヨト

- In applied statistics, a formal model is built after a thorough exploration of data.
- Reproducibility/replicability crisis in science is sometimes attributed to this type of data analysis.
- Model Selection/Cherry-picking makes classical statistical inference methods invalid.
- Berk et al. (2013) provided valid statistical inference for Gauss-Markov linear model under arbitrary variable selection.
- However, model misspecification also makes classical statistical inference methods invalid.

- The practice of data analysis often involves exploring the data thoroughly before a formal modeling begins. EDA is an example.
- Reproducibility/replicability crisis in science is sometimes attributed to this type of data analysis.
- Model Selection/Cherry-picking makes classical statistical inference methods invalid.
- Berk et al. (2013) provided valid statistical inference for Gauss-Markov linear model under arbitrary variable selection.
- However, model misspecification also makes classical statistical inference methods invalid.

Wanted: Valid inference under misspecification and model selection!

- PoSI Procedure general version:
 - Define a universe *M* of models *M* you might ever consider/select: outcomes (*Y*), regressors (*X*), their transforms (*f*(*X*), *g*(*Y*)), ...
 - Define the universe of all tests you might ever perform in these models, typically for regression coeffs β_{j,M} (j'th coeff in model M).
 - Consider the **maximum of the test statistics** for all these tests: Obtain its 0.05 critical value $C_{0.05}$ for **simultaneity** adjustment.
 - Now freely examine your data and select models $\hat{M} \in \mathcal{M}$, reconsider, re-select, re-reconsider, ... but compare all statistics against $C_{0.05}$, for 0.05 \mathcal{M} -simultaneity control.
- Cost-Benefit Analysis:
 - Cost: Huge computation upfront adjustment for millions of tests
 - Benefits: Solution to the circularity problem select model *M̂*, don't like it, select *M̂*', don't like it, ... PoSI inference remains valid.

Equivalence of PoSI and Simultaneous Inference

• For any set of functionals $\{\theta_M : M \in \mathcal{M}\}$ and confidence regions $\{\hat{\mathcal{R}}_M : M \in \mathcal{M}\}$, it is clear that for any $\hat{M} \in \mathcal{M}$,

$$\mathbb{P}\left(\theta_{\hat{M}} \in \hat{\mathcal{R}}_{\hat{M}}\right) \geq \mathbb{P}\left(\bigcap_{M \in \mathcal{M}} \{\theta_M \in \hat{\mathcal{R}}_M\}\right),\$$

Post-selection Inf. \leftarrow Simultaneous Inf.

• We have proved (Kuchibhotla et al. (2018a)) that

$$\inf_{\hat{M}\in\mathcal{M}}\mathbb{P}\left(\theta_{\hat{M}}\in\hat{\mathcal{R}}_{\hat{M}}\right) = \mathbb{P}\left(\bigcap_{M\in\mathcal{M}}\{\theta_{M}\in\hat{\mathcal{R}}_{M}\}\right),$$

Post-selection Inf. ⇔ Simultaneous Inf.

• Thus, simultaneous inference is necessary and sufficient for PoSI. All our methods aim for simultaneous inference.

Arun, Larry's Group (UPenn)

Developments in PoSI

Computationally Efficient PoSI for OLS

Arun, Larry's Group (UPenn)

Developments in PoSI

30 November 2018 9 / 20

A >

Notation

- Suppose (X_i, Y_i) ∈ ℝ^p × ℝ, 1 ≤ i ≤ n are observations that constitute regression data.
- Let the data matrices be

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} \in \mathbb{R}^{n \times p} \quad \text{and} \quad \mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \in \mathbb{R}^n.$$

• For any $1 \le k \le p$, let

$$\mathcal{M}(k) := \{ M \subseteq \{1, 2, \dots, p\} : 1 \le |M| \le k \},\$$

represent the set of *k*-sparse models.

• The OLS least squares estimator based on (X(M), Y) is given by

$$\hat{\beta}_M = (\mathbf{X}_M^\top \mathbf{X}_M)^{-1} (\mathbf{X}_M \mathbf{Y}).$$

• The OLS least squares target based on (X(M), Y) is given by

$$\beta_M = (\mathbb{E}[\mathbf{X}_M^\top \mathbf{X}_M])^{-1} (\mathbb{E}[\mathbf{X}_M \mathbf{Y}])$$

• Let $C_{xx}(\alpha)$, $C_{xy}(\alpha)$ be such that with probability $1 - \alpha$,

$$\left\{ \left\| \frac{\mathbf{X}^{\top}\mathbf{X} - \mathbb{E}[\mathbf{X}^{\top}\mathbf{X}]}{n} \right\|_{\infty} \leq \mathbf{C}_{xx}(\alpha) \& \left\| \frac{\mathbf{X}\mathbf{Y} - \mathbb{E}[\mathbf{X}\mathbf{Y}]}{n} \right\|_{\infty} \leq \mathbf{C}_{xy}(\alpha) \right\}$$

holds. Hence, $C_{xx}(\alpha)$, $C_{xy}(\alpha)$ denote the quantiles of the joint distribution.

Computationally Efficient Valid PoSI

• Consider for any $M \subseteq \{1, 2, \dots, p\}$, the region

$$\hat{\mathcal{R}}_{\boldsymbol{M}} := \left\{ \theta \in \mathbb{R}^{|\boldsymbol{M}|} : \|\hat{\boldsymbol{\Sigma}}_{\boldsymbol{n},\boldsymbol{M}}(\hat{\boldsymbol{\beta}}_{\boldsymbol{M}} - \theta)\|_{\infty} \leq \mathbf{C}_{\mathbf{x}\mathbf{y}}(\alpha) + \mathbf{C}_{\mathbf{x}\mathbf{x}}(\alpha)\|\hat{\boldsymbol{\beta}}_{\boldsymbol{M}}\|_{1} \right\},$$

where $\hat{\boldsymbol{\Sigma}}_{n,M} := \boldsymbol{X}_M^\top \boldsymbol{X}_M / n$.

• For independent or functionally dependent sub-Gaussian observations, if $k = o(\sqrt{n/\log p})$, then

$$\liminf_{n\to\infty} \mathbb{P}\left(\bigcap_{M\in\mathcal{M}(k)} \left\{\beta_M \in \hat{\mathcal{R}}_M\right\}\right) \geq 1 - \alpha.$$
 (Valid PoSI)

- These are polyhedral confidence regions parallelepiped in shape.
- Under above conditions, as $n \to \infty$,

$$\max \left\{ C_{xx}(\alpha), C_{xy}(\alpha) \right\} = O\left(\sqrt{\frac{\log p}{n}}\right)$$

To compute the confidence region
 ²
 ^Â
 ^Â
 ^Â
 ^Â
 ^A
 ^A

$$\hat{\Sigma}_{n,\hat{M}}, \ \hat{\beta}_{\hat{M}}, \ C_{xx}(\alpha), C_{xy}(\alpha).$$

- The first two are readily available for computations leading to $\hat{\beta}_{\hat{M}}$.
- The last two do not depend on M and only require computations of order p²; under independence they are obtained by generating

$$\left\|\frac{1}{n}\sum_{i=1}^{n} Z_{i}(X_{i}X_{i}^{\top} - \hat{\Sigma}_{n})\right\|_{\infty} \text{ and } \left\|\frac{1}{n}\sum_{i=1}^{n} Z_{i}(X_{i}Y_{i} - \mathbf{Ave}(XY))\right\|_{\infty},$$

where $Z_1, \ldots, Z_n \stackrel{iid}{\sim} N(0, 1)$. This is called **Multiplier Bootstrap**.

- Bootstrap asymptotics require $\log^5 p = o(n)$.
- A similar bootstrap works under functional dependence.

The PoSI guarantee does not require observations to be identically distributed; so covers the case of fixed design.

Reference	$Leb(\hat{\mathcal{R}}_{\hat{M}})$	Design
Kuchibhotla et al. (2018a)	$(\log p/n)^{ \hat{M} /2}$	fixed design
	$ \hat{M} \log p/n)^{ \hat{M} /2}$	random design
Berk et al. (2013) Bachoc et al. (2016) Kuchibhotla et al. (2018b)	$(k \log p/n)^{ \hat{M} /2}$	fixed/random design
Taylor and Co. (2016+)	Infinite	fixed/random design

Table: Lebesgue Measures of Different PoSI Regions over models $M \in \mathcal{M}(k)$.

Statistically Tight PoSI for OLS

Arun, Larry's Group (UPenn)

Developments in PoSI

30 November 2018 15 / 20

< 47 ▶

Uniform-in-submodel Result for OLS

If $Z_i := (X_i, Y_i)$ are *sub-Gaussian*, then the results of Kuchibhotla et al. (2018b) imply that for any $1 \le k \le p$,

$$\max_{M|\leq k} \left\| \hat{\beta}_M - \beta_M \right\|_2 = O_p\left(\sqrt{\frac{k \log(ep/k)}{n}} \right),$$

and

$$\max_{|M| \le k} \left\| \sqrt{n} \left(\hat{\beta}_M - \beta_M \right) - \frac{1}{\sqrt{n}} \sum_{i=1}^n \psi_M(Z_i) \right\|_2 = O_p \left(\frac{k \log(ep/k)}{\sqrt{n}} \right),$$

where

$$\psi_{\boldsymbol{M}}(\boldsymbol{Z}_i) := \boldsymbol{\Sigma}_{\boldsymbol{M}}^{-1} \boldsymbol{X}_{i,\boldsymbol{M}}(\boldsymbol{Y}_i - \boldsymbol{X}_{i,\boldsymbol{M}}^{\top} \boldsymbol{\beta}_{\boldsymbol{M}}).$$

Recall

$$\Sigma_M = \mathbb{E}\left[\frac{\mathbf{X}_M^{\top}\mathbf{X}_M}{n}\right] \text{ and } \beta_M := \Sigma_M^{-1}\mathbb{E}\left[\frac{\mathbf{X}_M\mathbf{Y}}{n}\right].$$

Arun, Larry's Group (UPenn)

.

Implications for PoSI

• These results imply that if $k \log(ep/k) = o(\sqrt{n})$, then as $n \to \infty$, simultaneously for all $|M| \le k$,

$$\sqrt{n}\left(\hat{\beta}_M-\beta_M\right) \approx \frac{1}{\sqrt{n}}\sum_{i=1}^n \psi_M(Z_i).$$

 This implies one can apply bootstrap to estimate quantiles of the "max-|t|" statistic:

$$\max - |\mathsf{t}| := \max_{|M| \le k, j \in M} \left| \frac{\sqrt{n}(\hat{\beta}_M(j) - \beta_M(j))}{\hat{\sigma}_M(j)} \right|$$

Here $\hat{\sigma}_M(j)$ represents an estimate of the standard error.

 This leads to an asymptotically tight PoSI in that there exists a model selection procedure for which smaller confidence regions are invalid.

Arun, Larry's Group (UPenn)

Conclusions

Arun, Larry's Group (UPenn)

Developments in PoSI

30 November 2018 18 / 20

2

イロト イ団ト イヨト イヨ

Conclusions

- We have provided post-selection inference allowing for increasing number of models for OLS linear regression.
- Based on the Gaussian approximation results, we have constructed and implemented two different PoSI regions.
- The first set of regions are computationally efficient: $\log p = o(n^{\frac{1}{5}})$.
- The second set of regions are statistically tight: $k \log(\frac{ep}{k}) = o(n^{\frac{1}{5}})$.
- Approximate (heuristic) methods for statistically tight regions are under study.
- Similar results holds for a large class of *M*-estimators and the methodology readily allows for explorations other than variable selection like transformations.

References

- Bachoc, F., Preinerstorfer, D., and Steinberger, L. (2016). Uniformly valid confidence intervals post-model-selection. arxiv.org/abs/1611.01043.
- [2] Berk, R., Brown, L. D., Buja, A., Zhang, K., Zhao, L. (2013) Valid post-selection inference. Ann. Statist. 41, no. 2, 802–837.
- [3] Kuchibhotla, Brown, Buja, Berk, Zhao, George (2018a) Valid Post-selection Inference in Assumption-lean Linear Regression. arXiv.org/abs/1806.04119.
- Kuchibhotla, Brown, Buja, Zhao, George (2018b) A Model Free Perspective for Linear Regression: Uniform-in-model Bounds for Post Selection Inference. arxiv.org/abs/1802.05801.
- Kuchibhotla, Brown, Buja, Zhao, George (2018+) A Note on Post-selection Inference for M-estimators. in preparation.

Thank You and Thanks to Linda Zhao and Junhui (Jeff) Cai.