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Introduction: Bahadur Representation
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Let's Remember Cramér

@ Suppose 21, ..., Z, are observations and we consider estimtor 0 satisfying

Z;;l 'I)Z}(Zia é\n) =0.
e MLE, OLS, GLMs and many more estimators are all obtained this way.

@ The classical proof of Cramér (1946) proves the Bahadur representation:

. 1 s 1
V(0 —0) = 7 ;(E[t/)(zl, ) ¥(Zi, 0) + op(1),
under some conditions including Zi, ..., Z, are iid and smoothness of 1.

@ The proof is based on Taylor series expansion (a deterministic tool):

oz;w(z,-,én) ~ §¢(z;,0)+;¢(zi,9)(9_9)_
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Let's Remember Cramér

@ Suppose 21, ..., Z, are observations and we consider estimtor 0 satisfying

Z;;l 'I)Z}(Zia é\n) =0.
e MLE, OLS, GLMs and many more estimators are all obtained this way.

@ The classical proof of Cramér (1946) proves the Bahadur representation:

. 1 s 1
V(0 —0) = 7 ;(E[t/)(zl, ) ¥(Zi, 0) + op(1),
under some conditions including Zi, ..., Z, are iid and smoothness of 1.

@ The proof is based on Taylor series expansion (a deterministic tool):
0=2 W(Z.0,) ~ Y (Z10)+ ) u(Z.0)(0~0).
i=1 i=1 i=1

Do we need Z; independent or even random? What is 67
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Importance of Bahadur Representation

o If /n(f—6)=n"1/23""_ W, + 0,(1), for mean zero random variables
Wi, ..., W,, then by CLT (independent/dependent versions)

Vi@ —0)% 2z, and P(/n(@—0)<t)—>P(Z<t),

where Z ~ N(0,Var(W4)). (Implies Inference.)
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Importance of Bahadur Representation

o If /n(f—6)=n"1/23""_ W, + 0,(1), for mean zero random variables
Wi, ..., W,, then by CLT (independent/dependent versions)

Vi@ —0)% 2z, and P(Va(d-0)<t)>P(Z<t),
where Z ~ N(0,Var(W4)). (Implies Inference.)

@ Suppose 91,92 both satisfy the representation (together):
él — 01 1 . Wl i
A = — ' 1).
\/E(9292> ﬁ; Wa i +op(1)
Then for any t, to,

P(vVn(f1 — 1) < ti,/n(f2 — 02) < &) — P(Z1 < 11,2 < b),

where (Z1, Z5) ~ N(0, Var(Wi 1, W5 1)). (Implies simultaneous inference.)
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Importance of Bahadur Representation

o If /n(f—6)=n"1/23""_ W, + 0,(1), for mean zero random variables
Wi, ..., W,, then by CLT (independent/dependent versions)

Vi@ —0)% 2z, and P(Va(d-0)<t)>P(Z<t),
where Z ~ N(0,Var(W4)). (Implies Inference.)

@ Suppose 91,92 both satisfy the representation (together):
él — 01 1 . Wl i
A = — ' 1).
NG (02 _ 02> NG ’z:; W, + 0p(1)
Then for any t, to,
P(v/n(f1 — 61) < t1,V/n(By — 62) < 1) — P(Z1 < t1,2 < to),

where (Z1, Z5) ~ N(0, Var(Wi 1, W5 1)). (Implies simultaneous inference.)

o Bahadur Representation =- (Simultaneous) Inference
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NBK Inequalities: Linear Regression?

1K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Start with Linear Regression

o Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

Bi=argmin 3 (Y- X0 & D X(Yi-XB)=o.
0eR? i=1 i=1
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Start with Linear Regression

o Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

ﬁ_argmmZY X'0)? & ZX(Y X;"B) =o0.

0eR? =y

e Here ¥(Z;,0) = Xi(Y: — X."0), linear in 0. Hence Taylor series is exact.
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Start with Linear Regression

o Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

ﬁ_argmmZY X'0)? & ZX(Y X;"B) =o0.

0eR? =y

e Here ¥(Z;,0) = Xi(Y: — X."0), linear in 0. Hence Taylor series is exact.
e Following Cramér's proof, we get for any 3 € R,

V(B —5) sz XY — X" B), where i::%ix,xﬁ.
i=1
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Start with Linear Regression

Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

= argmin Z -X'0? < ZX:'(Y:‘ - X'B)=o.
i=1

0erd

Here ¢(Z;,0) = Xi(Y; — X;"0), linear in 6. Hence Taylor series is exact.

Following Cramér's proof, we get for any 3 € R,

N 1<
V(B —5) sz XY — X" B), where z::;i;x,-xf.

e This holds for any set of observations (with 3 invertible).
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Start with Linear Regression

e Consider regression data Z; := (X;, Y;) € R? x R,1 < i < n and the OLS
estimator

= argmin Z -X'0? < ZX:'(Y:' - X'B)=o0.

0erR! 7 i=1

Here ¢(Z;,0) = Xi(Y; — X;"0), linear in 6. Hence Taylor series is exact.
Following Cramér’s proof, we get for any 3 € RY,

. 1<
V(B - B) sz IX;(Yi — X."3), where Z::;Z;X,-X,T.

This holds for any set of observations (with 5 invertible).

Requires neither independence nor a (true linear) model.
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Start with Linear Regression

e Consider regression data Z; := (X;, Y;) € R x R,1 < i < n and the OLS
estimator

—argmlnz -X'0? < ZX(Y X'B)=0.

oER? i=1 i=1

o Here 1(Z;,0) = X;(Y; — X;"0), linear in 6. Hence Taylor series is exact.
e Following Cramér’s proof, we get for any 3 € R,

N 1&
NCEY) Zz (Y= X;TB), where ¥:=-=" XX
\f N
o If Z; satisfy a version of LLN: Y ~ ¥ for some Y, then for any § € RY,
Va(B=B) = (1+0s(1) IZZ (i = X' B),

Note: ¥ does not have to be ES. Error is multiplicative not additive!!
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Formal Result for OLS

For any ¥ € RI*d set

D = |[T7V2E Y2 |l op.

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
<

. I
5_ﬂ_;;z XY= X'8)| < a=peyn

% > ITIX(Y - XTB)
i=1

pX >

@ Inequality is a deterministic version of Bahadur representation.
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Formal Result for OLS

For any ¥ € RI*d set

D = |[T7V2E Y2 |l op.

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
<

. I
5_ﬂ_;;z XY= X'8)| < a=peyn

% > ITIX(Y - XTB)
i=1

pX >

@ Inequality is a deterministic version of Bahadur representation.

@ Note D* ~ 0 issameas > ~ Y.
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Formal Result for OLS

For any ¥ € RI*d set

D = |[T7V2E Y2 |l op.

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
< -
- (1-D%)4

% > ITIX(Y - XTB)
i=1

A L= -1 T
ﬂ—/i—;;z Xi(Yi = X" )

pX >

@ Inequality is a deterministic version of Bahadur representation.
o Note DX ~ 0 issame as ¥ ~ ¥.

@ Requires NO model assumptions, NO randomness assumptions, NO
assumptions on d/n, NO independence/dependence assumptions.
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Formal Result for OLS

For any ¥ € RI*d set

D = |[T7V2E Y2 |l op.

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
< -
- (1-D%)4

% > ITIX(Y - XTB)
i=1

A L= -1 T
ﬂ—/i—;;z Xi(Yi = X" )

pX >

@ Inequality is a deterministic version of Bahadur representation.
o Note DX ~ 0 issame as ¥ ~ ¥.

@ Requires NO model assumptions, NO randomness assumptions, NO
assumptions on d/n, NO independence/dependence assumptions.

@ What are reasonable choices for ¥ and 37
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Canonical Choice of 5 and X

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
< -
- (1-D%)4

A IR -1 T
5—/3—;22 Xi(Yi = X" B)

% S ETIX(Y - XTB)
S

pX >

e A natural choice for ¥ satisfying D> ~ 0 is ¥ = E[3].
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Canonical Choice of 5 and X

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ
< -
- (1-D%)4

A IR -1 T
5—/3—;22 Xi(Yi = X" B)

% S ETIX(Y - XTB)
S

pX >

e A natural choice for ¥ satisfying D> ~ 0 is ¥ = E[3].
o If X;'s are fixed, then ¥ = ¥ and hence D* = 0.
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Canonical Choice of 5 and X

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ

= @T-D9), || n

pX

Zz XY — X" B)

A IR -1 T
ﬂ—/i—;;z Xi(Yi = X" B)

>

e A natural choice for ¥ satisfying D> ~ 0 is ¥ = E[3].
o If X;'s are fixed, then ¥ = ¥ and hence D* = 0.
o Want 3 — 8~ 0 or “equivalently” n=2 37 T-1X(Y; — X;" 8) ~ 0.
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Canonical Choice of 5 and X

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ

= @T-D9), || n

pX

Zz XY — X" B)

A IR -1 T
ﬂ—/i—;;z Xi(Yi = X" B)

>

o A natural choice for ¥ satisfying D> ~ 0 is ¥ = E[5].
o If X;'s are fixed, then ¥ = ¥ and hence D* = 0.
o Want 3 — 8~ 0 or “equivalently” n=2 37 T-1X(Y; — X;" 8) ~ 0.
@ At least require its expectation to be zero. Hence OLS target is
B = argmingegs L E[(Yi = XTB?] & LLLEX(Yi - XB)] =
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Canonical Choice of 5 and X

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any £ € R4 and any 3 € RY, we have

DZ

pX

Zz XY — X" B)

A IR -1 T
ﬂ—/i—;;z Xi(Yi = X" B)

>

A natural choice for ¥ satisfying D™ ~ 0 is ¥ = E[%].

If X;'s are fixed, then ¥ = % and hence D* = 0.

Want 3 — 3~ 0 or “equivalently” n~! ML ETIX(Y - X B) =~ 0.

At least require its expectation to be zero. Hence OLS target is

B = argmingegs L E[(Yi = XTB?] & LLLEX(Yi - XB)] =

@ Under weak dependence and tail assumptions,

13-t - 0, (1f2). o

6—722 Xi(Yi = X B)
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Application 1: Berry—Esseen Bounds
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Application 1: Berry—Esseen Bounds

Let C4 be the set of all convex sets in R?. Set D* = ||~ Y/25x1/2 — /||, and

TIKE = Var (7230 TOIX(Y - X TR)) .

Theorem (Berry—Esseen bound for OLS)

For all n > 1 and any A € Cyq,
‘]P)(nl/z(,@’ —B) € A)— P (N0, KT 1) € A)‘

<5

P <n—1/2 D TIXi(Yi - XTB) € A) —P(N(0,Z7'KX ) € A)

i=1

1/4) i1/2 1/4) 1/2
12—151/2p1/4 | dHIK 2 lop | AV |KY2 || Hs
ClIx e [ { nl/2 n3/4

I P (D): > d1/4/(n1/4\/@)> .

No model/randomness assumptions. Deterministic!!
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Application 1: Berry—Esseen Bounds Contd.

e If DX = O,(y/d/n), then for any A € Cq,
‘P(nI/Q(B —B) € A)—P(N(0,= KT 1) € A)‘

<cC

P <n1/2 Zzilxi(yi _ X,-Tﬁ) c A) _ p(N(o,ZflKZ*l) e A).
i=1

If X;'s are fixed then D* = 0 and inequality above holds with C = 1.

If average converges to a normal, then n1/2(/3’ — /3) converges to a normal.
The above inequality makes this quantitative.

Implies confidence regions, hypothesis tests.

Can simultaneously infer about all coordinates of 3.

No model assumptions.
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Application 2: Transformations of Response
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Application 2: Transformations of Response

@ In modeling, it is sometimes of interest to transform the response to match
the assumptions like Gaussianity or homoscedasticity. Eg. Box—Cox family.

@ Finding such “good” transformation involves some data snooping. Once
again the inequality can be used to get a result for final estimator.

@ Suppose G is a class of transformations under consideration and for each
g € G, we have the OLS estimator

Bg '= argmingcpa Z;’:l(g(Y,-) - XiTe)z'

For any g € G, define Inf,(0) :=n~1 > 1 T 1Xi(g( V) — X" 6).

Corollary (Bahadur Representation with Transformed Response)
For any set of observations Z; = (X;, Y;), any ¥, any g € G and any 3; € RY,

>

[ = 6 = 1n1,80)], < Ty 185 (B

In particular this holds for any random g € G chosen based on the data.

v
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Application 3: Variable Selection
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Application 3: Variable Selection

@ More often than not, the set of covariates in a reported model is not the
same as the set of covariates the analyst started with.

o Finding such “good” set of covariates involves some data snooping.

@ Suppose M is a collection of models (set of covariates) and for each
M € M, we have the OLS estimator

B/\/I = argmingegim yor (Vi — XITM9)2.

Set for any M € M, Infy(0) :=n"t 30 T X m(Y: — X, Tu0)-

Corollary (Bahadur Representation with Variable Selection)

For any M € M, any Xy, and any Bm € RIMI, we have
. D%,
— — I < —>——||IT
[Bua = 1 = 20 (Bm|, < Ty NGl

where DY := ||):,T/,1/2fMZ,T/,1/2 — hwmyllop- In particular M can be randomly chosen
based on the data. |
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Rates in a Special Case

@ Suppose (X1, Y1),...,(Xn, Ya) are independent and satisfy
2

_ t .
P(IZp X T0] > t) < 2exp <_c2> forall 6,1<i<n,

and
Var(Y;) < C? forall 1<i<n.

@ Then uniformly over 1 <s < d,

|M|=s n

max max{D),\:,,, I Infm(Bm)lswt = Op ( s|og(ed/5)> )

@ Hence uniformly over 1 < s < d,

o 13w — Bullz, = O, ( 'g(d”> ,
" max ||By — Bm — Inf (B )H =0 (slog(ea’/s)>
max ||Pm M mPm)|l_ b - .
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Implication: Post-selection Inference

@ Uniform linear representation result allows us to claim

b

inax NBm = Bulloo 2 max,

1 n
- ;w(x,-, Y;)

o

for some vector functions 1.
o High-dimensional CLT implies

max
MeMm

1 n
- ;w(x,-, Y;)

L
~ G
7231 Gl

o0

for some Gaussian process (Gp)men.
o Corresponding multiplier bootstrap implies

Cond. on (X;, Y)),

I~ -
=D &im(X:, Y7)
i=1

~ L
nax 16m — Bmlle = nax
o0

for g1,...,8, ~ N(0,1) (iid).
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Summary and Conclusions

Arun Kuchibhotla (UPenn) NBK Inequalities 30 July, 2019 19 /20



Summary and Conclusions

@ We have introduced the idea of studying estimators in a deterministic way.

@ NBK inequalities solve almost all problems about an estimator in one shot:

o They imply Berry—Esseen type bounds and hence (finite sample) normal
approximation results can follow.

o They allow for understanding the effects of increasing dependence between
observations, increasing dimension.

@ Importantly in the context of reproducibility, NBK inequalities allow study of
estimators obtained after data snooping.

@ In particular, it solves the problem of post-selection inference in a unified way
and in the most general framework available till date.

@ Application of a (proximal) variant of Newton's method for penalized or
constrained estimators leads to first order expansion results.

Arun Kuchibhotla (UPenn) NBK Inequalities 30 July, 2019 20 / 20



Summary and Conclusions

@ We have introduced the idea of studying estimators in a deterministic way.

@ NBK inequalities solve almost all problems about an estimator in one shot:

o They imply Berry—Esseen type bounds and hence (finite sample) normal
approximation results can follow.

o They allow for understanding the effects of increasing dependence between
observations, increasing dimension.

@ Importantly in the context of reproducibility, NBK inequalities allow study of
estimators obtained after data snooping.

@ In particular, it solves the problem of post-selection inference in a unified way
and in the most general framework available till date.

@ Application of a (proximal) variant of Newton's method for penalized or
constrained estimators leads to first order expansion results.

Thanks!
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2

NBK Inequalities: Logistic/Poisson Regression

2K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Logistic/Poisson Regression

@ For either 1(u) = log(1 + exp(u)), Logistic or 1(u) = exp(u) Poisson, let

= argmingcps Ln(6), where L,(0):=3>", [ft,ZJ(X,-TQ) — Y,-X,-TG] ,

o Define for any 6 € R and ¥ € RY*9, DX(0) := | 2L,(0)Z 2 = Iy||op-

Theorem
For any 3 € R? and any ¥ € R9*9 jf

max [[E72X| x [£1Ly(8) |z < 0.19(1 — DF(B)):., &)
then
1Bn = B+ X La(B)lIx < D*(8) 10 max; IIZ‘1/2X:'HHZ’1Ln(5)Hz_

I==2La(B)I1= ~ (1-D(8))+ 1-D>(B)3

Assumption (1) arises becasue of non-linearity of estimating function L,(6).
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Some Comments

o For 3 defined as a minimizer of L,(+), a canonical choice of ¥, 3 is given by

8= aroger;;jn E[L,(0)] and ¥ :=E[L,(B)].
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Some Comments

o For 3 defined as a minimizer of L,(+), a canonical choice of ¥, 3 is given by

8= aroger;;jn E[L,(0)] and ¥ :=E[L,(B)].

@ For independent as well as a weakly dependent sub-Gaussian observations,

max{D¥(6), [|E7 La(B) £} = Op(v/d/n),

which implies

18n = B+ T La(B)s = Op (\/Z) I~ La(B) 5
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Some Comments

o For 3 defined as a minimizer of L,(+), a canonical choice of ¥, 3 is given by

8= aroger;;jn E[L,(0)] and ¥ :=E[L,(B)].

@ For independent as well as a weakly dependent sub-Gaussian observations,

max{D¥(6), [|E7 La(B) £} = Op(v/d/n),

which implies

18n = B+ T La(B)s = Op (\/Z) I~ La(B) 5

@ Following the result for logistic and Poisson regression, applications like
transformations, variable selection can be carried out easily.
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Some Comments

o For 3 defined as a minimizer of L,(+), a canonical choice of ¥, 3 is given by

8= aroger;;jn E[L,(0)] and ¥ :=E[L,(B)].

@ For independent as well as a weakly dependent sub-Gaussian observations,

max{D¥(6), [|E7 La(B) £} = Op(v/d/n),

which implies

18n = B+ T La(B)s = Op (\/Z) I~ La(B) 5

@ Following the result for logistic and Poisson regression, applications like
transformations, variable selection can be carried out easily.

@ These inequalities are also proved for Cox proportional hazards model,
Non-linear least squares, Equality constrained M-estimators among others.
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Application: Post-selection Inference

@ Uniform linear representation result allows us to claim

b

inax NBm = Bulloo 2 max,

1 n
- ;w(x,-, Y;)

o

for some vector functions 1.
o High-dimensional CLT implies

max
MeMm

1 n
- ;w(x,-, Y;)

L
~ G
7231 Gl

o0

for some Gaussian process (Gp)men.
o Corresponding multiplier bootstrap implies

Cond. on (X;, Y)),

I~ -
=D &im(X:, Y7)
i=1

~ L
nax 16m — Bmlle = nax
o0

for g1,...,8, ~ N(0,1) (iid).
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PoSI Contd.

@ To finish inference, need to compute

1~ -
- i Xi7\/i 5
max n;gm )

o0

for a given set of models M.
@ Number the models in M as 1,2,..., N. We have

I~ -
Xj = angﬂbj(Xi, Yi)
i=1

oo

@ Need to compute (at least approximately)

Ixlloo = max Ixil,

for the vector x = (x1,...,xn).
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Maximum Computation®

@ Observe that

1/q 1/q

N N
*Z < lxlloe < NY9 Z

N

2 \

e If W is a random variable drawn uniformly from {x,...,xny}, then
EWDYT < xee < NYIEW)HA,

@ Hence (multiplicatively) approximating the maximum is same as
approximating the expectation of a random variable given access to
independent draws.

How many draws required to find E[W?] upto a factor of
(1+e)?

3Joint work (in progress) with Junhui Cai
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@ We have shown how the analysis of Newton’s method can be used to
derive finite sample results for M-estimators.

@ This idea allow “easier” study of constrained/penalized M-estimators.

@ Connections to AMP7?7?

@ These results imply post-selection inference for various estimation procedures
including GLMs, Cox Model, NonLinear Least Squares, Equality
Constrained MLE.

@ Realizing PoSl in practice requires solving a maximum problem.

PoSI — Maximum Estimation — Mean Estimation.

@ achievable sample complexity bounds for maximum??
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Maximum Computation (Contd.)

e An estimator £y of E[W] > 0 is an (e, §) approximate if

IE”( <E> > 1-46.

o If a random variable W > 0 is known to satisfy

éiw ~1
E[w]

Var(W) < [3(E[W])?

then

n = 2—L2|o L
6,6 - 82 g \/g(s .

e If a random variable W € [0, B] for some known B, then

o = o ity % (5)

for some universal constant C > 0.
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