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Traditional inference framework



Inference: confidence intervals

⋆ The construction of confidence sets for functionals is a standard

problem in statistics.

⋆ Suppose θ(P),P ∈ P is a functional of interest, for example, the mean

of P or a coefficient in a regression model.

⋆ Traditional inference methods such as Wald or resampling (e.g.

bootstrap or subsampling) proceed as follows.

⋆ Assuming the existence of an estimator θ̂n based on n observations such

that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

r̂n
, θ̂n −

q̂α/2
r̂n

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L, and r̂n is an estimate of rn, if unknown.
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Example: Linear Regression

⋆ Suppose (X ,Y ) ∈ Rd+1 is a random vector from a distribution P and

we are interested in the projection parameter θ0 = θ(P) defined

θ(P) = argmin
θ∈Rd

EP [(Y − X⊤θ)2].

⋆ Because of unconstrained optimization, θ(P) is also the solution to the

equation

EP [X (Y − X⊤θ)] = 0.

⋆ Using IID data (Xi ,Yi ), 1 ≤ i ≤ n, θ(P) can be estimated using

θ̂n = argmin
θ∈Rd

n∑
i=1

(Yi − X⊤
i θ)

2.

⋆ For a fixed d , assuming the invertibility of Σ = E[XX⊤], as n → ∞,

n1/2(θ̂n − θ(P))
d→ N(0,Σ−1VΣ−1),

where V = E[XX⊤(Y − X⊤θ(P))2]; no linear model or Gaussianity.
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Wald Inference: Linear Regression

⋆ The asymptotic variance can be estimated as Σ̂−1V̂ Σ̂−1.

⋆ For any vector c ∈ Rd , the Wald confidence interval for c⊤θ(P) can be

obtained as

ĈIn,α(c) :=

c⊤θ̂n ± zα/2

(
c⊤Σ̂−1V̂ Σ̂−1c

n

)1/2
 .

⋆ Again with d fixed, as n → ∞, this confidence interval has an

asymptotic coverage of 1− α.

⋆ This nicety fails when dimensions grow rapidly or when constraints are

placed on the projection parameter.
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Failure of traditional inference:

Increasing dimension



Asymptotics: Increasing dimension

⋆ With some algebraic manipulation, the OLS estimator satisfies

θ̂n − θ(P) =
1

n

n∑
i=1

Σ̂−1Xi (Yi − X⊤
i θ(P)).

⋆ Asymptotic normality is claimed, for fixed d , by replacing Σ̂−1 with Σ−1

with “negligible” error:

θ̂n − θ(P) =
1

n

n∑
i=1

Σ−1Xi (Yi − X⊤
i θ(P))

+
1

n

n∑
i=1

(Σ̂−1 − Σ−1)Xi (Yi − X⊤
i θ(P)).

⋆ The first term is mean zero and responsible for asymptotic normality,

and for fixed d , the second term is negligible compared to the first.

⋆ But when the dimension is allowed to grow, the first term is of order

1/
√
n and the second is of order d/n.
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Asymptotics: Increasing dimension

⋆ If d = o(n1/2), then

n1/2(θ̂n − θ(P))
d
≈ N(0,Σ−1VΣ−1).

The asymptotic variance can be consistently estimated as if d were

fixed.

⋆ If d ≫ n1/2, then

n1/2(θ̂n − θ(P)− B(P))
d
≈ N(0,Σ−1VΣ−1),

where

B(P) = n−1E[Σ−1(XX⊤ − Σ)Σ−1X (Y − X⊤θ(P))].

⋆ Interestingly, B(P) = 0 if E[Y |X ] = X⊤θ(P).
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Inference with increasing dimension

⋆ If B̂n is a consistent estimator for B(P) satisfying

n1/2(B̂n − B(P)) = op(1),

then the debiased estimator θ̂debiasn = θ̂n − B̂n satisfies

n1/2(θ̂debiasn − θ(P))
d
≈ N(0,Σ−1VΣ−1).

⋆ Even if such a bias estimator exists, traditional inference still relies on

estimating the variance.

⋆ Unfortunately, consistent bias estimation may not be possible for all of

d = o(n). Chang et al. (2023) proposed a “good” bias estimator when

d = o(n2/3), and also proved the consistency of the classical variance

estimator.

⋆ Hence, traditional Wald inference is only valid for d = o(n2/3). We do

not know the limiting distribution of θ̂debiasn for d ≫ n2/3.
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Failure of traditional inference:

Constraints



With constraints

⋆ Summarizing the unconstrained case, we do not know of an estimator

for θ(P) with a tractable (estimable) limiting distribution for all of

d = o(n).

⋆ The situation is much worse with constraints, even if d is fixed as

n → ∞.

⋆ Suppose

θ(P) = argmin
θ∈Θ

E[(Y − X⊤θ)2],

for some set Θ ⊆ Rd .

⋆ The limiting distribution of the sample estimator θ̂n is highly dependent

on the regularity of θ(P) with respect to Θ. The limit could be a

projected Gaussian; see Pflug (1995), Geyer (1994), and Shapiro (2000).

⋆ If Θ is a closed convex set, then θ(P) is characterized by

(θ − θ(P))⊤E[X (Y − X⊤θ(P))] ≤ 0 for all θ ∈ Θ.
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Examples with constraints

⋆ Examples with constraints are relevant in practice.

⋆ Sparsity inducing least squares:

Θ = {θ ∈ Rd : ∥θ∥1 ≤ t},

or

Θ =

θ ∈ Rd :
k∑

j=1

∥θGj∥2 ≤ t

 .

⋆ Shape inducing least squares:

Θ = {θ ∈ Rd : θ ⪰ 0},

or

Θ = {θ ∈ Rd : ∆1θ ⪰ 0},

where ∆1θ yields the first order differences of θ; e.g., (∆1θ)1 = θ2 − θ1.
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New Approach:

Self-normalizationa

aJoint work with Woonyoung Chang (arXiv:2407.12278)



Without constraints

⋆ Without constraints, θ(P) solves the equation

EP [ψ(Z ; θ(P))] = 0, where ψ(Z ; θ) = X (Y − X⊤θ).

Hence, u⊤ψ(Z ; θ(P)) is a mean zero random variable for any u ∈ Rd .

⋆ This implies that

CIn,α(u) :=

θ ∈ Rd :
|
∑n

i=1 u
⊤ψ(Zi ; θ)|√∑n

i=1(u
⊤ψ(Zi ; θ))2

≤ zα/2

 ,

is an asymptotically valid (1− α) confidence set. In fact, for all u ∈ Rd

and n ≥ 1,

P(θ(P) /∈ CIn,α(u)) ≤ α+
1√
n
× EP [|u⊤ψ(Z ; θ(P))|3]

(EP [(u⊤ψ(Z ; θ(P))2])3/2
.

⋆ This proves dimension-agnostic validity guarantee and holds for any

Z -estimation problem. Note: no variance estimation, no bootstrap, no

rate of convergence are needed.
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Without constraints

⋆ Although valid, this confidence set is not practically viable because it is

unbounded in all but one direction. This is useful for inference for linear

contrasts.

⋆ This comes from the fact that EP [u
⊤ψ(Z ; θ)] = 0 does not imply

EP [ψ(Z ; θ)] = 0.

⋆ Alternatively, vectors u that depend on θ yield bounded confidence sets.

Formally,

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑n

i=1(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑n
i=1((θ̃1 − θ)⊤ψ(Zi ; θ))2

≤ zα/2

 ,

is also an asymptotically valid (1− α) confidence set. Here, θ̃1 is any

estimator independent of Z1, . . . ,Zn.

⋆ The validity does not depend on the consistency of θ̃1, but the diameter

depends on it.
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Without constraints

⋆ In the context of linear regression, this confidence set is easy to

compute because it is a quadratic inequality.

⋆ It is clear that

θ̃1, θ̂n ∈ ĈI
∗
n,α.

Hence, the diameter of the confidence set cannot shrink faster than the

rate of convergence of the Z -estimator.

⋆ Chang and Kuchibhotla (2025) prove that, for linear regression,

diam(ĈI
∗
n,α) = Op

(√
d/n

)
.

Similar result holds for GLMs.

⋆ For the functional of interest c⊤θ(P), we propose

c⊤
(
ĈI

∗
n,α/n ∩ ĈIn,α(Σ̃

−1c)
)
,

as the confidence set. This has dimension-agnostic validity and,

moreover, its diameter scales as n−1/2 + d/n. 13



With constraints

⋆ The approach can be seamlessly extended to the case with constraints.

Recall that if Θ is a closed convex set and θ̃1 ∈ Θ is some initial

estimator, then

(θ̃1 − θ(P))EP [X (Y − X⊤θ(P))] ≤ 0.

⋆ Hence, a valid confidence set for θ(P) is

ĈI
∗
n,α :=

θ ∈ Θ :

∑n
i=1(θ̃1 − θ)⊤ψ(Zi ; θ)√∑n
i=1((θ̃1 − θ)⊤ψ(Zi ; θ))2

≤ zα/2

 ,

⋆ Once again, the validity is agnostic to the dimension d . The study of

the diameter is in progress.

⋆ Similarly, confidence intervals can be constructed for c⊤θ(P) for any

c ∈ Rd .
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Comment: Assumptions

Set Σ = E[XX⊤] and V = E[XX⊤(Y − X⊤θ0)
2].

(LM1) There exist qx ≥ 8, qy ,Kx ,Ky ≥ 1 such that

sup
u∈Sd−1

E[|u⊤Σ−1/2X |qx ] ≤ K qx
x ,

and

E[|Y − X⊤θ(P)|qy ] ≤ K
qy
y .

Moreover, qxy := (1/qx + 1/qy )
−1 ≥ 4,

(LM2) There exist positive constants λΣ, λΣ, λV , and λV such that

0 < λΣ ≤ λmin(Σ) ≤ λmax(Σ) ≤ λΣ <∞

and

0 < λV ≤ λmin(V ).
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Comment: General Z-estimators

⋆ In a more general context of Z-estimation (beyond linear regression), we

have θ(P) defined by

E[ψ(Z ; θ(P))] = 0,

for some estimating function ψ(Z ; ·).

⋆ The proposed confidence set

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑n

i=1(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑n
i=1((θ̃1 − θ)⊤ψ(Zi ; θ))2

≤ zα/2

 ,

continues to be an asymptotically valid (1− α)-confidence set.

⋆ However, this is analytically and computationally intractable for general

ψ. Tractability can be improved using the initial estimator θ̃1.

⋆ Define the alternative confidence set

ĈI
∗
n,α :=

θ ∈ Rd :
|
∑n

i=1(θ̃1 − θ)⊤ψ(Zi ; θ)|√∑n
i=1((θ̃1 − θ)⊤ψ(Zi ; θ̃1))2

≤ zα/2

 ,

16



Conclusions



Conclusions

⋆ Construction of valid confidence sets can be difficult even for seemingly

innocuous functionals.

⋆ For the linear regression problem, our confidence sets are valid

regardless of dimension and have a minimax diameter of
√
d/n.

⋆ This continues to hold for GLMs as well, including logistic regression.

⋆ Our proposal can be seamlessly extended to problems with constraints

for which asymptotic limit theory is still unavailable.

⋆ For linear contrasts (one-dimensional functionals), our self-normalization

confidence set has a diameter of order n−1/2 + d/n. In contrast, our

debiasing approach yields a confidence interval with the width of n−1/2

whenever d = o(n2/3).

⋆ Characterizing the minimax width of confidence sets for linear contrasts

is of interest.
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