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Traditional inference framework



Inference: confidence intervals

* The construction of confidence sets for functionals is a standard
problem in statistics.

* Suppose 0(P), P € P is a functional of interest, for example, the mean
of P or a coefficient in a regression model.

* Traditional inference methods such as Wald or resampling (e.g.
bootstrap or subsampling) proceed as follows.

* Assuming the existence of an estimator (/9\,7 based on n observations such
that
& d
ra(0, — 0(P)) = L,

a confidence interval can be constructed as

6\In,oz = é\n - ql:a/27 é\n - qi/2

I'n I'n

b

where @ represents an estimate of the -th quantile of the random
variable L, and 7, is an estimate of r,, if unknown.



Example: Linear Regression

* Suppose (X, Y) € R¥*1 is a random vector from a distribution P and
we are interested in the projection parameter g = 6(P) defined
9(P) = argmin Ep[(Y — X "6)?].
OeRd
* Because of unconstrained optimization, §(P) is also the solution to the
equation
Ep[X(Y — X"0)] = 0.

* Using IID data (X;, Y;),1 < i < n, (P) can be estimated using

n

~

6, = argmin Z(Y, - X;"0)2.
OeRT iy



Example: Linear Regression

* Suppose (X, Y) € R¥*1 is a random vector from a distribution P and
we are interested in the projection parameter g = 6(P) defined
9(P) = argmin Ep[(Y — X "6)?].
OeRd
* Because of unconstrained optimization, §(P) is also the solution to the
equation
Ep[X(Y — X"0)] = 0.

* Using IID data (X;, Y;),1 < i < n, (P) can be estimated using

n

8, = argmin Z(Y, - X;"0)2.
S

x For a fixed d, assuming the invertibility of ¥ = E[XX '], as n — oo,

n'2@, — 0(P)) % N(0,Z'vETl),

where V = E[XX (Y — X T0(P))?]; no linear model or Gaussianity.



Wald Inference: Linear Regression

% The asymptotic variance can be estimated as -1 VE 1,

* For any vector ¢ € R9, the Wald confidence interval for c"(P) can be
obtained as

PN 1/2
—~ ~ TS ==
Cl,a(c) = CT(),,:i:za/z (CC

’ n
* Again with d fixed, as n — oo, this confidence interval has an

asymptotic coverage of 1 — a.

* This nicety fails when dimensions grow rapidly or when constraints are
placed on the projection parameter.



Failure of traditional inference:
Increasing dimension



Asymptotics: Increasing dimension

* With some algebraic manipulation, the OLS estimator satisfies

l e
0, —0(P) ==Y TIX(Y; - X" 0(P)).
(P) = 5 2 E7%(; = XTo(P)
* Asymptotic normality is claimed, for fixed d, by replacing ¥ -1 with £-1
with “negligible” error:

Zz LXi(Y; — X, 6(P))

+= Zz— Xi(Y; — X;T0(P)).

* The first term is mean zero and responsible for asymptotic normality,
and for fixed d, the second term is negligible compared to the first.

* But when the dimension is allowed to grow, the first term is of order
1/4/n and the second is of order d/n.



Asymptotics: Increasing dimension

* If d = o(n'/?), then

n2(8, — 0(P)) < N(O,T-lvEl).

The asymptotic variance can be consistently estimated as if d were
fixed.

* If d > n'/2, then
/28, — 0(P) — B(P)) & N(0,z-1vE-l),
where
B(P)=n'E[x (XX — ) 'X(Y - XT6(P)).

* Interestingly, B(P) = 0 if E[Y|X] = X T(P).



Inference with increasing dimension

 If B, is a consistent estimator for B(P) satisfying

n'/?(B, - B(P)) = 0p(1),

then the debiased estimator Gdeblas 0, — B, satisfies
nt/2(@eeviss _ g(py) £ N0, = tvE L),

* Even if such a bias estimator exists, traditional inference still relies on
estimating the variance.

* Unfortunately, consistent bias estimation may not be possible for all of
d = o(n). Chang et al. (2023) proposed a “good” bias estimator when
d = o(n?/?), and also proved the consistency of the classical variance
estimator.

* Hence, traditional Wald inference is only valid for d = o(n?/3). We do
not know the limiting distribution of #3125 for d >> n?/3,



Failure of traditional inference:
Constraints




With constraints

* Summarizing the unconstrained case, we do not know of an estimator
for (P) with a tractable (estimable) limiting distribution for all of
d = o(n).

* The situation is much worse with constraints, even if d is fixed as
n — oo.

* Suppose

o(P) = aregeng)in E[(Y — XT9)2],

for some set © C RY,

* The limiting distribution of the sample estimator @\,, is highly dependent
on the regularity of 8(P) with respect to ©. The limit could be a
projected Gaussian; see Pflug (1995), Geyer (1994), and Shapiro (2000).



With constraints

* Summarizing the unconstrained case, we do not know of an estimator
for (P) with a tractable (estimable) limiting distribution for all of
d = o(n).

* The situation is much worse with constraints, even if d is fixed as
n — oo.

* Suppose

o(P) = aregeng)in E[(Y — XT9)2],

for some set © C RY,

* The limiting distribution of the sample estimator @\,, is highly dependent
on the regularity of 8(P) with respect to ©. The limit could be a
projected Gaussian; see Pflug (1995), Geyer (1994), and Shapiro (2000).

* If © is a closed convex set, then §(P) is characterized by

(0 —6(P)TE[X(Y —X"9(P))] <0 forall #co.



Examples with constraints

* Examples with constraints are relevant in practice.
* Sparsity inducing least squares:
©={0cR?: |0); <t}
or

k
©=<S0eR: ) |fgl<t

j=1
* Shape inducing least squares:
©={0cR?: 6>0},

or
©={0cR?: A0>0},

where A;0 yields the first order differences of 0; e.g., (A10); = 6, — 6.

10



New Approach:
Self-normalization?

2Joint work with Woonyoung Chang (arXiv:2407.12278)



Without constraints

* Without constraints, 6(P) solves the equation
Ep[(Z;0(P))] =0, where (Z;0) = X(Y —X'0).

Hence, u"4(Z;0(P)) is a mean zero random variable for any u € RY.

* This implies that

n To(Z:: 0
CIn,a(U) =<0 c RY - |ZI:1 u ’(/)( : )|
\/27:1(UT1/’(Z,';9))2
is an asymptotically valid (1 — a) confidence set. In fact, for all u € R
and n>1,

< Zaj2 (s

1 EpllaTu(Z:6(P)F]
P(Q(P) §é CIn,a(“)) <a+ \/ﬁ (EP[(UTQ/)(Z; 9(,D))2])3/2'

* This proves dimension-agnostic validity guarantee and holds for any

Z-estimation problem. Note: no variance estimation, no bootstrap, no

rate of convergence are needed. u



Without constraints

* Although valid, this confidence set is not practically viable because it is
unbounded in all but one direction. This is useful for inference for linear
contrasts.

x This comes from the fact that Ep[u'(Z; )] = 0 does not imply
Ep[y(Z;0)] = 0.

* Alternatively, vectors u that depend on @ yield bounded confidence sets.
Formally,

| 501 (81 — 0)T9(Z::0))|
VI (02— 0)T(Z: 6)

is also an asymptotically valid (1 — &) confidence set. Here, 01 is any

Cl. ={aeRr?:

n,a

< 2(1/2 )

estimator independent of Zy,..., Z,.

* The validity does not depend on the consistency of 51, but the diameter

depends on it.
12



Without constraints

* In the context of linear regression, this confidence set is easy to
compute because it is a quadratic inequality.

* It is clear that
61,6, € CT, .
Hence, the diameter of the confidence set cannot shrink faster than the
rate of convergence of the Z-estimator.

* Chang and Kuchibhotla (2025) prove that, for linear regression,

diam(a\I:,a) = O (M> .

Similar result holds for GLMs.

x For the functional of interest ¢ " 6(P), we propose

c’ <6\I* N CAI,,,a(i_lc)) ,

n,a/n

as the confidence set. This has dimension-agnostic validity and,
moreover, its diameter scales as n=1/2 + d/n. 13



With constraints

*

The approach can be seamlessly extended to the case with constraints.
Recall that if © is a closed convex set and #; € © is some initial
estimator, then

(61 = O(P)ER[X(Y — XTO(P))] < 0.
Hence, a valid confidence set for (P) is
Sina(6 — 0)"(Z:6)
VI (O~ 0)T(Zi0))?

Once again, the validity is agnostic to the dimension d. The study of
the diameter is in progress.

Cl. ={sco:

n,a

< Zo /2

Similarly, confidence intervals can be constructed for ¢ ' (P) for any
c e R

14



Comment: Assumptions

Set ¥ = E[XXT] and V = E[XXT (Y — XT6)2].
(LM1) There exist g, > 8, gy, K, K, > 1 such that

sup E[lu" = V2X|%] < K%,
uesd-1

and
E[lY — XTO(P)|*] < K"

Moreover, g, := (1/qx +1/q,) "' > 4,
(LM2) There exist positive constants Ay, Ax, Ay, and Ay such that

0< AZ S )\min(z) S )\max(z) S XZ < 00

and
0 < Av S >\min(v)-

15



Comment: General Z-estimators

* In a more general context of Z-estimation (beyond linear regression), we
have 6(P) defined by
E[y(Z:6(P))] =0,

for some estimating function ¢(Z;-).

* The proposed confidence set

* " (6, —0)T .
CIn,a o= 0 c Rd . |ZI:1(91 9) ¢(le 9)‘ < za/2 ,

VI — 0)To(Z:6))2

continues to be an asymptotically valid (1 — a)-confidence set.

* However, this is analytically and computationally intractable for general
1. Tractability can be improved using the initial estimator ;.

* Define the alternative confidence set
7 5 —0 Z,'; 0
|Zl:l( 1 ) ,17&( )‘ < Za/2 ;

CL, ={6eRr?: = =
VI (01— 0)T(Z5:0,))2 10

n,a




Conclusions




Conclusions

* Construction of valid confidence sets can be difficult even for seemingly
innocuous functionals.

* For the linear regression problem, our confidence sets are valid
regardless of dimension and have a minimax diameter of \/d/n.

* This continues to hold for GLMs as well, including logistic regression.

* Our proposal can be seamlessly extended to problems with constraints
for which asymptotic limit theory is still unavailable.

* For linear contrasts (one-dimensional functionals), our self-normalization
confidence set has a diameter of order n=*/2 4 d/n. In contrast, our
debiasing approach yields a confidence interval with the width of n—1/2

whenever d = o(n?/3).

* Characterizing the minimax width of confidence sets for linear contrasts
is of interest.

17



	Traditional inference framework
	Failure of traditional inference: Increasing dimension
	Failure of traditional inference: Constraints
	New Approach: Self-normalizationJoint work with Woonyoung Chang (arXiv:2407.12278)
	Conclusions

