Adaptive Inference Techniques for Some Irregular Problems

Inference for Linear Regression

Arun Kumar Kuchibhotla

13 June, 2025

Carnegie Mellon University

Collaborators

Kenta Takatsu (CMU)

Woonyoung Chang (CMU)

1

Table of contents

- 1. Traditional inference framework
- 2. Failure of traditional inference: Increasing dimension
- 3. Failure of traditional inference: Constraints
- 4. New Approach: Self-normalization¹
- 5. Conclusions

 $^{^{1}}$ Joint work with Woonyoung Chang (arXiv:2407.12278)

Traditional inference framework

Inference: confidence intervals

- * The construction of confidence sets for functionals is a standard problem in statistics.
- * Suppose $\theta(P), P \in \mathcal{P}$ is a functional of interest, for example, the mean of P or a coefficient in a regression model.
- Traditional inference methods such as Wald or resampling (e.g. bootstrap or subsampling) proceed as follows.
- \star Assuming the existence of an estimator $\widehat{\theta}_n$ based on n observations such that

$$r_n(\widehat{\theta}_n - \theta(P)) \stackrel{d}{\to} L,$$

a confidence interval can be constructed as

$$\widehat{\mathrm{CI}}_{n,\alpha} := \left[\widehat{\theta}_n - \frac{\widehat{q}_{1-\alpha/2}}{\widehat{r}_n}, \, \widehat{\theta}_n - \frac{\widehat{q}_{\alpha/2}}{\widehat{r}_n} \right],$$

where \hat{q}_{γ} represents an estimate of the γ -th quantile of the random variable L, and \hat{r}_n is an estimate of r_n , if unknown.

Example: Linear Regression

* Suppose $(X,Y) \in \mathbb{R}^{d+1}$ is a random vector from a distribution P and we are interested in the projection parameter $\theta_0 = \theta(P)$ defined

$$\theta(P) = \operatorname*{arg\;min}_{\theta \in \mathbb{R}^d} \mathbb{E}_P[(Y - X^ op \theta)^2].$$

 \star Because of unconstrained optimization, $\theta(P)$ is also the solution to the equation

$$\mathbb{E}_P[X(Y-X^{\top}\theta)]=0.$$

★ Using IID data $(X_i, Y_i), 1 \le i \le n$, $\theta(P)$ can be estimated using

$$\widehat{\theta}_n = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n (Y_i - X_i^{ op} \theta)^2.$$

4

Example: Linear Regression

* Suppose $(X,Y) \in \mathbb{R}^{d+1}$ is a random vector from a distribution P and we are interested in the projection parameter $\theta_0 = \theta(P)$ defined

$$\theta(P) = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \mathbb{E}_P[(Y - X^ op \theta)^2].$$

 \star Because of unconstrained optimization, $\theta(P)$ is also the solution to the equation

$$\mathbb{E}_P[X(Y-X^{\top}\theta)]=0.$$

★ Using IID data $(X_i, Y_i), 1 \le i \le n$, $\theta(P)$ can be estimated using

$$\widehat{\theta}_n = \operatorname*{arg\,min}_{\theta \in \mathbb{R}^d} \sum_{i=1}^n (Y_i - X_i^{\top} \theta)^2.$$

 \star For a fixed d, assuming the invertibility of $\Sigma = \mathbb{E}[XX^\top]$, as $n \to \infty$,

$$n^{1/2}(\widehat{\theta}_n - \theta(P)) \stackrel{d}{\to} N(0, \Sigma^{-1}V\Sigma^{-1}),$$

where $V = \mathbb{E}[XX^{\top}(Y - X^{\top}\theta(P))^2]$; no linear model or Gaussianity.

Wald Inference: Linear Regression

- \star The asymptotic variance can be estimated as $\widehat{\Sigma}^{-1}\widehat{V}\widehat{\Sigma}^{-1}$.
- \star For any vector $c \in \mathbb{R}^d$, the Wald confidence interval for $c^\top \theta(P)$ can be obtained as

$$\widehat{\mathrm{CI}}_{n,\alpha}(c) := \left[c^{\top} \widehat{\theta}_n \pm z_{\alpha/2} \left(\frac{c^{\top} \widehat{\Sigma}^{-1} \widehat{V} \widehat{\Sigma}^{-1} c}{n} \right)^{1/2} \right].$$

- * Again with d fixed, as $n \to \infty$, this confidence interval has an asymptotic coverage of 1α .
- * This nicety fails when dimensions grow rapidly or when constraints are placed on the projection parameter.

Failure of traditional inference:

Increasing dimension

Asymptotics: Increasing dimension

* With some algebraic manipulation, the OLS estimator satisfies

$$\widehat{\theta}_n - \theta(P) = \frac{1}{n} \sum_{i=1}^n \widehat{\Sigma}^{-1} X_i (Y_i - X_i^\top \theta(P)).$$

 \star Asymptotic normality is claimed, for fixed d, by replacing $\widehat{\Sigma}^{-1}$ with Σ^{-1} with "negligible" error:

$$\widehat{\theta}_n - \theta(P) = \frac{1}{n} \sum_{i=1}^n \frac{\mathbf{\Sigma}^{-1} X_i (Y_i - X_i^{\top} \theta(P))}{\sum_{i=1}^n (\widehat{\mathbf{\Sigma}}^{-1} - \mathbf{\Sigma}^{-1}) X_i (Y_i - X_i^{\top} \theta(P))}$$

- \star The first term is mean zero and responsible for asymptotic normality, and for fixed d, the second term is negligible compared to the first.
- * But when the dimension is allowed to grow, the first term is of order $1/\sqrt{n}$ and the second is of order d/n.

Asymptotics: Increasing dimension

* If $d = o(n^{1/2})$, then

$$n^{1/2}(\widehat{\theta}_n - \theta(P)) \stackrel{d}{\approx} N(0, \Sigma^{-1}V\Sigma^{-1}).$$

The asymptotic variance can be consistently estimated as if d were fixed.

 \star If $d \gg n^{1/2}$, then

$$n^{1/2}(\widehat{\theta}_n - \theta(P) - B(P)) \stackrel{d}{\approx} N(0, \Sigma^{-1}V\Sigma^{-1}),$$

where

$$B(P) = n^{-1} \mathbb{E}[\Sigma^{-1}(XX^{\top} - \Sigma)\Sigma^{-1}X(Y - X^{\top}\theta(P))].$$

* Interestingly, B(P) = 0 if $\mathbb{E}[Y|X] = X^{\top}\theta(P)$.

Inference with increasing dimension

* If \widehat{B}_n is a consistent estimator for B(P) satisfying

$$n^{1/2}(\widehat{B}_n - B(P)) = o_p(1),$$

then the debiased estimator $\widehat{\theta}_n^{\text{debias}} = \widehat{\theta}_n - \widehat{B}_n$ satisfies

$$n^{1/2}(\widehat{\theta}_n^{\text{debias}} - \theta(P)) \stackrel{d}{\approx} N(0, \Sigma^{-1}V\Sigma^{-1}).$$

- * Even if such a bias estimator exists, traditional inference still relies on estimating the variance.
- * Unfortunately, consistent bias estimation may not be possible for all of d = o(n). Chang et al. (2023) proposed a "good" bias estimator when $d = o(n^{2/3})$, and also proved the consistency of the classical variance estimator.
- * Hence, traditional Wald inference is only valid for $d = o(n^{2/3})$. We do not know the limiting distribution of $\widehat{\theta}_n^{\text{debias}}$ for $d \gg n^{2/3}$.

Failure of traditional inference:

Constraints

With constraints

- * Summarizing the unconstrained case, we do not know of an estimator for $\theta(P)$ with a tractable (estimable) limiting distribution for all of d = o(n).
- \star The situation is much worse with constraints, even if d is fixed as $n \to \infty$.
- * Suppose

$$\theta(P) = \underset{\theta \in \Theta}{\operatorname{arg\,min}} \ \mathbb{E}[(Y - X^{\top}\theta)^2],$$

for some set $\Theta \subseteq \mathbb{R}^d$.

* The limiting distribution of the sample estimator $\widehat{\theta}_n$ is highly dependent on the regularity of $\theta(P)$ with respect to Θ . The limit could be a projected Gaussian; see Pflug (1995), Geyer (1994), and Shapiro (2000).

With constraints

- * Summarizing the unconstrained case, we do not know of an estimator for $\theta(P)$ with a tractable (estimable) limiting distribution for all of d = o(n).
- \star The situation is much worse with constraints, even if d is fixed as $n \to \infty$.
- * Suppose

$$\theta(P) = \operatorname*{arg\,min}_{\theta \in \Theta} \, \mathbb{E}[(Y - X^\top \theta)^2],$$

for some set $\Theta \subseteq \mathbb{R}^d$.

- * The limiting distribution of the sample estimator $\widehat{\theta}_n$ is highly dependent on the regularity of $\theta(P)$ with respect to Θ . The limit could be a projected Gaussian; see Pflug (1995), Geyer (1994), and Shapiro (2000).
- \star If Θ is a closed convex set, then $\theta(P)$ is characterized by

$$(\theta - \theta(P))^{\top} \mathbb{E}[X(Y - X^{\top}\theta(P))] \leq 0$$
 for all $\theta \in \Theta$.

Examples with constraints

- * Examples with constraints are relevant in practice.
- * **Sparsity** inducing least squares:

$$\Theta = \{ \theta \in \mathbb{R}^d : \|\theta\|_1 \le t \},$$

or

$$\Theta = \left\{ heta \in \mathbb{R}^d : \sum_{j=1}^k \| heta_{\mathcal{G}_j}\|_2 \leq t
ight\}.$$

* Shape inducing least squares:

$$\Theta = \{ \theta \in \mathbb{R}^d : \theta \succeq 0 \},\$$

or

$$\Theta = \{ \theta \in \mathbb{R}^d : \Delta_1 \theta \succeq 0 \},\$$

where $\Delta_1\theta$ yields the first order differences of θ ; e.g., $(\Delta_1\theta)_1=\theta_2-\theta_1$.

New Approach: Self-normalization^a

^a Joint work with Woonyoung Chang (arXiv:2407.12278)

Without constraints

 \star Without constraints, $\theta(P)$ solves the equation

$$\mathbb{E}_P[\psi(Z;\theta(P))] = 0$$
, where $\psi(Z;\theta) = X(Y - X^{\top}\theta)$.

Hence, $u^{\top}\psi(Z;\theta(P))$ is a mean zero random variable for any $u \in \mathbb{R}^d$.

* This implies that

$$\mathrm{CI}_{n,\alpha}(u) := \left\{ \theta \in \mathbb{R}^d : \frac{|\sum_{i=1}^n u^\top \psi(Z_i;\theta)|}{\sqrt{\sum_{i=1}^n (u^\top \psi(Z_i;\theta))^2}} \leq z_{\alpha/2} \right\},\,$$

is an asymptotically valid $(1 - \alpha)$ confidence set. In fact, for all $u \in \mathbb{R}^d$ and n > 1,

$$\mathbb{P}(\theta(P) \notin \mathrm{CI}_{n,\alpha}(u)) \leq \alpha + \frac{1}{\sqrt{n}} \times \frac{\mathbb{E}_P[|u^\top \psi(Z;\theta(P))|^3]}{(\mathbb{E}_P[(u^\top \psi(Z;\theta(P))^2])^{3/2}}.$$

 \star This proves dimension-agnostic validity guarantee and holds for any Z-estimation problem. Note: no variance estimation, no bootstrap, no rate of convergence are needed.

Without constraints

- Although valid, this confidence set is not practically viable because it is unbounded in all but one direction. This is useful for inference for linear contrasts.
- * This comes from the fact that $\mathbb{E}_P[u^\top \psi(Z;\theta)] = 0$ does not imply $\mathbb{E}_P[\psi(Z;\theta)] = 0$.
- \star Alternatively, vectors u that depend on θ yield bounded confidence sets. Formally,

$$\widehat{\mathrm{CI}}_{n,\alpha}^* := \left\{ \theta \in \mathbb{R}^d : \frac{|\sum_{i=1}^n (\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta)|}{\sqrt{\sum_{i=1}^n ((\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta))^2}} \leq z_{\alpha/2} \right\},\,$$

is also an asymptotically valid $(1 - \alpha)$ confidence set. Here, $\widetilde{\theta}_1$ is any estimator independent of Z_1, \ldots, Z_n .

 \star The validity does not depend on the consistency of $\widetilde{\theta}_1,$ but the diameter depends on it.

Without constraints

- In the context of linear regression, this confidence set is easy to compute because it is a quadratic inequality.
- * It is clear that

$$\widetilde{\theta}_1, \widehat{\theta}_n \in \widehat{\mathrm{CI}}_{n,\alpha}^*$$

Hence, the diameter of the confidence set cannot shrink faster than the rate of convergence of the *Z*-estimator.

★ Chang and Kuchibhotla (2025) prove that, for linear regression,

$$\operatorname{\mathsf{diam}}(\widehat{\operatorname{CI}}_{n,\alpha}^*) = O_p\left(\sqrt{d/n}\right).$$

Similar result holds for GLMs.

* For the functional of interest $c^{\top}\theta(P)$, we propose

$$c^\top \left(\widehat{\operatorname{CI}}_{n,\alpha/n}^* \, \cap \, \widehat{\operatorname{CI}}_{n,\alpha}(\widetilde{\Sigma}^{-1}c) \right),$$

as the confidence set. This has dimension-agnostic validity and, moreover, its diameter scales as $n^{-1/2} + d/n$.

With constraints

* The approach can be seamlessly extended to the case with constraints. Recall that if Θ is a closed convex set and $\widetilde{\theta}_1 \in \Theta$ is some initial estimator, then

$$(\widetilde{\theta}_1 - \theta(P))\mathbb{E}_P[X(Y - X^{\top}\theta(P))] \leq 0.$$

 \star Hence, a valid confidence set for $\theta(P)$ is

$$\widehat{\mathrm{CI}}_{n,\alpha}^* := \left\{ \theta \in \Theta : \frac{\sum_{i=1}^n (\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta)}{\sqrt{\sum_{i=1}^n ((\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta))^2}} \leq z_{\alpha/2} \right\},\,$$

- ★ Once again, the validity is agnostic to the dimension d. The study of the diameter is in progress.
- * Similarly, confidence intervals can be constructed for $c^{\top}\theta(P)$ for any $c \in \mathbb{R}^d$.

Comment: Assumptions

Set
$$\Sigma = \mathbb{E}[XX^{\top}]$$
 and $V = \mathbb{E}[XX^{\top}(Y - X^{\top}\theta_0)^2]$.

(LM1) There exist $q_x \ge 8, q_y, K_x, K_y \ge 1$ such that

$$\sup_{u \in \mathbb{S}^{d-1}} \mathbb{E}[|u^{\top} \Sigma^{-1/2} X|^{q_{\scriptscriptstyle X}}] \le K_{\scriptscriptstyle X}^{q_{\scriptscriptstyle X}},$$

and

$$\mathbb{E}[|Y - X^{\top}\theta(P)|^{q_y}] \leq K_y^{q_y}.$$

Moreover, $q_{xy} := (1/q_x + 1/q_y)^{-1} \ge 4$,

(LM2) There exist positive constants $\underline{\lambda}_{\Sigma}$, $\overline{\lambda}_{\Sigma}$, $\underline{\lambda}_{V}$, and $\overline{\lambda}_{V}$ such that

$$0<\underline{\lambda}_{\Sigma}\leq\lambda_{\min}(\Sigma)\leq\lambda_{\max}(\Sigma)\leq\overline{\lambda}_{\Sigma}<\infty$$

and

$$0 < \underline{\lambda}_V \le \lambda_{\min}(V).$$

Comment: General Z-estimators

 \star In a more general context of Z-estimation (beyond linear regression), we have $\theta(P)$ defined by

$$\mathbb{E}[\psi(Z;\theta(P))]=0,$$

for some estimating function $\psi(Z;\cdot)$.

* The proposed confidence set

$$\widehat{\mathrm{CI}}_{n,\alpha}^* := \left\{ \theta \in \mathbb{R}^d : \frac{|\sum_{i=1}^n (\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta)|}{\sqrt{\sum_{i=1}^n ((\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta))^2}} \leq z_{\alpha/2} \right\},\,$$

continues to be an asymptotically valid $(1 - \alpha)$ -confidence set.

- * However, this is analytically and computationally intractable for general ψ . Tractability can be improved using the initial estimator $\widetilde{\theta}_1$.
- * Define the alternative confidence set

$$\widehat{\mathrm{CI}}_{n,\alpha}^* := \left\{ \theta \in \mathbb{R}^d : \frac{|\sum_{i=1}^n (\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \theta)|}{\sqrt{\sum_{i=1}^n ((\widetilde{\theta}_1 - \theta)^\top \psi(Z_i; \widetilde{\theta}_1))^2}} \leq z_{\alpha/2} \right\},\,$$

Conclusions

Conclusions

- * Construction of valid confidence sets can be difficult even for seemingly innocuous functionals.
- * For the linear regression problem, our confidence sets are valid regardless of dimension and have a minimax diameter of $\sqrt{d/n}$.
- * This continues to hold for GLMs as well, including logistic regression.
- Our proposal can be seamlessly extended to problems with constraints for which asymptotic limit theory is still unavailable.
- * For linear contrasts (one-dimensional functionals), our self-normalization confidence set has a diameter of order $n^{-1/2} + d/n$. In contrast, our debiasing approach yields a confidence interval with the width of $n^{-1/2}$ whenever $d = o(n^{2/3})$.
- * Characterizing the minimax width of confidence sets for linear contrasts is of interest.