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Introduction to Post-selection

Inference



Inference: confidence intervals

⋆ Statistical inference is the cornerstone of statistics and is a necessary

ingredient in any rigorous scientific study.

⋆ Traditional statistical inference deals with the inference for a functional

θ(P),P ∈ P, when the functional is decided independently of the data.

⋆ For example, θ(P) could be the mean of P or a slope in a linear

regression model.

⋆ In such a setting, assuming the existence of an estimator θ̂n based on n

observations such that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

rn
, θ̂n +

q̂α/2
rn

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L. 3



Post-selection Inference

⋆ Unlike the setting of statistical theory, data analysts or stakeholders

often take the functional to be data dependent.

⋆ This, most often, arises from a preliminary exploratory data analysis and

then the analyst forms a “suitable” hypothesis to test.

⋆ Hence, we need inference for a data dependent functional θ̂(P).

⋆ For a concrete example, consider the data setting with one response Y

and p covariates X1, . . . ,Xp. The functionals one could consider are

marginal correlations, i.e.,

θj(P) := Corr(Y ,Xj) = E[YXj ]. (assuming zero mean, unit var.)

These are data independent functionals. The analyst after performing

univariate analysis might be interested in testing the hypothesis

H0 : θĵ(P) = 0 where ĵ is the index of covariate that maximizes the

correlation with Y in the data.
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Post-selection Inference

⋆ The fundamental hurdle in post-selection inference is that

n1/2(θ̂ĵ − θĵ(P)) does not have a normal distribution, even

asymptotically. Selection skews the estimator.

⋆ There is a rich literature on post-selection inference, and one of the

proposed methods is simultaneous inference.

⋆ Simultaneous inference works by performing inference for all functionals

that the analyst could have chosen.

⋆ In our example, if we know that the analyst will choose one of

θj(P), 1 ≤ j ≤ p at the end of his/her exploration, we can report

confidence intervals such that

P

 p⋂
j=1

{θj(P) ∈ ĈI
(j)

n,α}

 ≥ 1−α Rightarrow P
(
θĵ(P) ∈ ĈI

(ĵ)

n,α

)
≥ 1−α.

No matter how ĵ is chosen.
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Disadvantages of Simultaneous Inference

⋆ Although simultaneous inference gives a lot of flexibility in the analyst’s

selection method, it comes with certain disadvantages.

⋆ One has to specify the “universe” of selection.

⋆ Computation of simultaneous confidence intervals is “NP-hard” because

one has to compute all the estimators in the universe for the

construction of the confidence interval.

⋆ The validity of simultaneous confidence intervals is also restricted by the

universe. The larger the universe, the more restrictive the conditions

should be for validity.

⋆ In addition, simultaneous inference also cannot account for selection

arising through sample size randomness.

⋆ In what follows, we discuss a simple framework to avoid specification of

the universe, NP-hard computation, and restrictive assumptions on the

data-generating process.
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The Proposal



The Idea

⋆ Suppose that we are to obtain data from a distribution P ∈ P. P is

assumed to be supported on a subset of Rd .

⋆ Suppose we can construct a data-dependent set of distributions

P̂n,α ⊆ P such that

inf
P∈P

PP(P ∈ P̂n,α) ≥ 1− α, (1)

then, for any functional θ : P → R, defining the set

ĈIn,α(θ) := {θ(P) : P ∈ P̂n,α},

we get

inf
P∈P

PP

(
θ(P) ∈ ĈIn,α(θ) for all functionals θ

)
≥ 1− α.

⋆ In particular, for any data-dependent functional θ̂ : P → R, we get

inf
P∈P

PP

(
θ̂(P) ∈ ĈIn,α(θ̂)

)
≥ 1− α.

⋆ Note that computation only involves the chosen functional θ̂ and not

the universe. Validity depends only on (2). 7



How is this any easier?

⋆ Construction of a data-dependent set of distributions P̂n,α ⊆ P
satisfying

inf
P∈P

PP(P ∈ P̂n,α) ≥ 1− α, (2)

might look daunting.

⋆ To show that it is not, let us consider the one-dimensional case. 1-d

distributions are characterized by the CDFs.

⋆ The classical DKW inequality implies

P

(
sup
x

|F̂n(x)− FP(x)| ≤
√

log(2/α)

2n

)
≥ 1− α.

Here F̂n(x) = n−1
∑n

i=1 1{Xi ≤ x} and FP(x) = PP(X ≤ x).

⋆ Hence, an example of P̂n,α is the collection of distributions with CDFs

lying between F̂n(x)−
√

log(2/α)/2n and F̂n(x) +
√
log(2/α)/2n for

all x .
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Impossibility Conflicts

⋆ While it is possible to construct confidence sets for distributions, it

might not yield any useful confidence intervals for some functionals.

⋆ For example, given a DKW confidence set for CDF, we can construct an

(almost) optimal confidence interval for the population median.

⋆ On the other hand, if we are interested in the mean, then the DKW

confidence set yields the trivial confidence set of R for the mean.

⋆ This happens because no confidence set for the distribution can provide

non-trivial information about the tails.

⋆ This can be escaped by restricting the collection of distributions P.

⋆ For the mean example, Anderson (1969) considered the restriction of

boundedness on P. We consider more general conditions such as

moment boundedness. (More about this in the following.)
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What about the multivariate case?

⋆ In the one-dimensional case, the CDF is informative and sufficient

enough for most functionals. In the multivariate case, the CDF is not

enough.

⋆ As a generalization, for example, consider concentration inequalities for

sup
A∈A

∣∣∣∣∣1n
n∑

i=1

1{Xi ∈ A} − PP(X ∈ A)

∣∣∣∣∣ , (3)

for a class of sets A.

⋆ Moreover, in the 1-d case, we have distribution-free confidence sets. For

example, (assuming continuity of FP(·))

sup
x

|F̂n(x)− FP(x)|
d
= sup

u∈[0,1]

∣∣∣∣∣1n
n∑

i=1

1{Ui ≤ u} − u

∣∣∣∣∣ ,
where U1, . . . ,Un are IID standard uniform random variables. This

implies that one can construct (almost) exact confidence sets for P.

⋆ This distribution-free character is lost in the multivariate case, for

computing bounds on (3).
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Wald and Tukey Solution

⋆ Tukey, generalizing an idea of Wald, created statistically equivalent

blocks B1, . . . ,Bn+1 from multivariate data X1, . . . ,Xn such that

(µP(B1), . . . , µP(Bn+1))
d
= (S1,S2, . . . ,Sn,Sn+1),

where µP(B) = PP(X ∈ B) and Sj = U(j) − U(j−1) represent the

spacings of standard uniform random variables.

⋆ Hence, we can construct a distribution-free confidence set for P by

considering the known distribution of the spacings of uniform random

variables.

⋆ An example of this construction is to cut the space Rd recursively based

on different univariate projections of the data: Order data with respect

to the first coordinate, split Rd into two parts based on the largest

value of the first coordinate. Remove the observation with the largest

first coordinate, repeat this with the second coordinate, and so on.
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Statistically Equivalent Blocks

Figure 1: Statistically Equivalent Blocks: Illustration (Credit: Liu et al. (2022,

Stat. in Med.)) 12



Application to Population Mean



Confidence Intervals for Mean

⋆ Consider the special problem of constructing confidence intervals for the

mean of a univariate distribution.

⋆ Although simple, it has far reaching applications and implications.

⋆ Note that

EP [X ] =

∫ 1

0

F−1
P (δ)dδ =

∫ ∞

0

(1− FP(x))dx +

∫ 0

−∞
FP(x)dx .

⋆ If we know FP(x) ∈ [ℓα(x), uα(x)] for all x with a probability of at least

1− α, then computing bounds from above would yield R.

⋆ Anderson (1969) considered random variables with support [0, 1] to get

a non-trivial confidence intervals.
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Inference for Mean

⋆ We consider the general condition

EP [H(|X |)] ≤ K , (4)

for a non-negative, non-decreasing, even function H : [0,∞) → [0,∞).

⋆ We also assume lim|x|→∞ H(|x |)/|x | > 0 so that (4) implies the

existence of the mean.

Assumption H(x)

Bounded r.v. |x |∞1{|x | > M}
Light tails exp(x2/t2) for some t ∈ R
Heavy tails |x |k for any k > 1

Heavier tails |x | log(|x |)

⋆ Now, the confidence interval is

ĈIn,α :=

[
inf

F (x)∈[ℓα(x),uα(x)]∀x,(4)

∫
xdF (x), sup

F (x)∈[ℓα(x),uα(x)]∀x,(4)

∫
xdF (x)

]
.
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Width of the Confidence Interval

⋆ The width of the resulting confidence interval is heavily influenced by

the choice of the confidence band and the constraint.

⋆ For example, with the DKW bound and constraint E[H(X/K )] ≤ 1, we

get

Width ≤ 4K

√
log(2/α)

2n
H−1

(√
n

4 log(2/α)

)
.

⋆ Hence, the width is O(n−1/2) if and only if X is a bounded random

variable. Even with sub-Gaussian random variables, the width is of the

order
√
log(n)/n. With H(x) = x2, the width is of the order n−1/4.

⋆ On the other hand, with confidence band of the type

KL(F̂n(x),F (x)) ≤ κα for all x , we get

Width ≤ Kκα

√
log log n

n
, if H(x) = x2.

⋆ The log log n factor can also be removed if we use debiased KL

confidence bands. 15



Computation and Simulations



Computation of the confidence intervals

⋆ Computation of the confidence interval requires finding the supremum

and infimum of the integrals over a set of distribution functions.

⋆ This is in fact a linear programming problem in the space of probability

measures.

⋆ The primal problem is

sup / inf

∫
xdF such that

ℓα(x) ≤G (x) ≤ uα(x) ∀x ∈ {X1, . . . ,Xn}∫
H(x)dG ≤ K∫
dG = 1

G is a non-negative measure
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Dual formulation

⋆ The dual is a linear semi-infinite programming (LSIP) problem.

sup / inf
n∑

i=1

(λu
i uα(Xi )− λℓ

i ℓα(Xi )) + λHK + λp such that

n∑
i=1

(λu
i − λℓ

i )1{x ≤ Xi}+ λHH(x) + λp ≥ x ∀x ∈ R

λu
I , λ

ℓ
I , λ

H ≥ 0, λP ∈ R

⋆ Solvable! (via discretization algorithm + proper initialization)

17



Simulations: Bounded r.v.
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Simulations
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Simulations
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Simulations: growing sample size

Compare performance across different assumptions.

Data: X ∼ FH such that
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Conclusions

⋆ We have proposed a computationally efficient, assumption-lean

post-selection valid confidence interval.

⋆ Time uniformity follows if we construct data-dependent classes of

distributions such that

inf
P∈P

PP

( ∞⋂
n=1

{
P ∈ P̂n,α

})
≥ 1− α.

This follows from Law of Iterated Logarithm (LIL) results for CDFs.

⋆ We have some preliminary results on the width of the confidence

interval to show that they are a constant inflation of Wald intervals,

when random variables have finite variance.

⋆ Much more to explore!!

Thank You!
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Conclusions

⋆ We have proposed a computationally efficient, assumption-lean

post-selection valid confidence interval.

⋆ Time uniformity follows if we construct data-dependent classes of

distributions such that

inf
P∈P

PP

( ∞⋂
n=1

{
P ∈ P̂n,α

})
≥ 1− α.

This follows from Law of Iterated Logarithm (LIL) results for CDFs.

⋆ We have some preliminary results on the width of the confidence

interval to show that they are a constant inflation of Wald intervals,

when random variables have finite variance.

⋆ Much more to explore!!

Thank You!
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