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Invalidity of Classical Inference



Example: Invalidity of classical inference under selection

Generate 500 observations from (X ,Y ) ∼ N(0, Ip+1). (Y ⊥ X )

Select one covariate Xĵ that is most correlated with Y .

Coverage of classical 95% confidence interval
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Summary

Unadjusted classical inference can be (very) misleading.

Duality of confidence intervals and testing implies that classical tests may

not control Type I error.

It does not require a pathological selection to invalidate classical

inference.

More concerningly, common practice of data exploration is very informal

and imprecise.
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Formulation of the Problem



There are p hypotheses to start with

H0,j : corr(Y ,Xj) = 0, for 1 ≤ j ≤ p.

Equivalently,

H0,j : βj = 0, for 1 ≤ j ≤ p,

where

(αj , βj) := argmin
(α,β)

E
[
(Y − α− βXj)

2
]
.

Select a ĵ ∈ {1, 2, . . . , p} based on the data.

Test the hypothesis H0,ĵ : βĵ = 0.

Classical (invalid) test:

Reject H0,ĵ if |t ĵ | :=
n1/2|β̂ ĵ |
σ̂ ĵ

≤ 1.96.
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The General PoSI Problem

For each model M ⊆ {1, 2, . . . , p}, define the OLS target as

βM := argmin
θ∈R|M|

E
[
(Y − X>Mθ)2

]
.

Construct a confidence region ĈI ĵ·M̂ such that

lim inf
n→∞

P
(
β ĵ·M̂ ∈ ĈI ĵ·M̂

)
≥ 1− α,

for any model M̂ (of size at most k) and ĵ ∈ M̂, irrespective of how it is

chosen.
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A Guiding Principle

Simultaneous Inference ⇒ Post-selection Inference

P

 ⋂
|M|≤k
j∈M

{
βj·M ∈ ĈIj·M

} ≤ inf
ĵ∈M̂,
|M̂|≤k

P
(
β ĵ·M̂ ∈ ĈI ĵ·M̂

)
.

Theorem:

Simultaneous inference is necessary for valid PoSI.
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Three Solutions



A (Very) Simple Solution

Apply Bonferroni procedure.

P

 ⋂
|M|≤k
j∈M

{
βj·M ∈ ĈIj·M

} ≥ 1−
∑
|M|≤k,
j∈M

P
(
βj·M ∈ ĈIj·M

)
.

How many elements in the sum?∑
|M|≤k,
j∈M

1 =
k∑

s=1

s

(
p

s

)
�
(ep
k

)k
.

Construct 1− α

(ep/k)k
confidence intervals for individual coefficients.

Can be very conservative.
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Second Simple Solution

For simultaneous inference, inflate the interval to

ĈIj·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ Kα

}
,

with Kα, the (1− α) quantile of

max
|M|≤k, j∈M

∣∣∣∣∣n1/2(β̂j·M − βj·M)

σ̂j·M

∣∣∣∣∣ .
Accounts for dependence.
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Disadvantage of these Solutions

Bonferroni Solution:

ĈI
Bonf

j·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ zα/(2(ep/k)k )

}
.

PoSI Solution:

ĈI
PoSI

j·M :=

{
θ ∈ R :

∣∣∣∣∣n1/2(β̂j·M − θ)

σ̂j·M

∣∣∣∣∣ ≤ Kα

}
.

Kα usually grows with largest model size k .

Say, k = 20, then

width of intervals for model of size 2

≈
width of intervals for model of size 20.
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The Third Solution



Define

(OLS Estimator) β̂M := argmin
θ∈R|M|

1

n

n∑
i=1

(Yi − X>i,Mθ)2,

(OLS Target) βM := argmin
θ∈R|M|

1

n

n∑
i=1

E
[
(Yi − X>i,Mθ)2

]
.

For any M ⊆ {1, 2, . . . , p}, consider the confidence region

ĈI
UPoSI*

M :=
{
θ ∈ R|M| : ‖Σ̂M(β̂M − θ)‖∞ ≤ Cxy (α) + Cxx(α)‖θ‖1

}
.

Then for any model M̂ chosen based on the data,

P
(
βM̂ ∈ ĈI

UPoSI*

M̂

)
≥ 1− α,

if Cxy (α) and Cxx(α) denote the (1− α) joint quantiles of∥∥∥∥∥1

n

n∑
i=1

{XiYi − E[XiYi ]}

∥∥∥∥∥
∞

and

∥∥∥∥∥1

n

n∑
i=1

{XiX
>
i − E[XiX

>
i ]}

∥∥∥∥∥
∞

.
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Comparison of Volumes

Reference Leb(ĈIM̂) Design

Kuchibhotla et al. (2021, AoS)
(log p/n)|M̂|/2 fixed

(|M̂| log p/n)|M̂|/2 random

Berk et al. (2013)

Bachoc et al. (2019)

Kuchibhotla et al. (2021,

Econ. Theory)

(k log(ep/k)/n)|M̂|/2 fixed/random

Table 1: Volumes of Different PoSI Regions.
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Some Questions



Question 1: Optimality of volume

� We have shown that simultaneous inference is necessary and

sufficient for post-selection inference in the problem formulation

here.

� If arbitrary model selection procedures are allowed and the analyst

chooses the covariate subset M̂, then what is the best possible

confidence set for βM̂ in terms of volume?

� The current best available is (|M̂| log(ep/|M̂|)/n)|M̂|/2. This follows

from the third solution above and also the Hierarchical PoSI

proposed in Kuchibhotla (2020, PhD Thesis).

� From the literature of sparse high-dimensional linear regression, this

volume seems to be the best possible.

What is the smallest volume confidence set for βM̂ with an

(asymptotic) coverage validity for arbitrary selection of M̂?
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Question 1: Optimality of volume (Contd.)

� A simpler problem to consider is the normal means setting.

� Suppose X ∼ N(µ,Σ) in Rd with known Σ. Let µ = (µ1, . . . , µd)>.

� Consider the problem of constructing a confidence interval for µĵ for

a data-based selection ĵ ∈ {1, 2, . . . , d}.

� For any fixed 1 ≤ j ≤ d , a valid confidence interval for µj has width

that scales as
√

Var(Xj).

� For a data-based selection ĵ , one can construct confidence intervals

of width of order

√
log(ĵ) maxj

√
Var(Xj)|j=ĵ .

� It is currently unknown what the smallest volume confidence set for

this simpler setting.
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Question 2: Dynamic PoSI

� The post-selection inference problem posed is written with respect

to a universe.

� For example, in linear regression with covariate selection, we have

the universe of selection to be set of all subsets of covariates.

� In practice, this is not how data-drive selection is done. The second

model selection method is informed by the output of the first model

selection method, i.e., dynamic selection.

� For example, one might decide to (univariate) marginal screening

first, then depending how many p-values are small might decide

where to threshold the p-values for selecting covariates.

� Without any control on either the dynamics or the output of

selection, PoSI is impossible.

� Dynamic PoSI via randomized output is acheived by adaptive data

analysis and stable algorithms. But these methods require specific

model selection methods and cannot handle visual selection. 18



Question 2: Dynamic PoSI (Contd.)

� Is there a generic way to modify the output of an arbitrary model

selection strategy to solve dynamic PoSI?

� This includes those selections based on residual plots, QQ plots, and

so on.

� At present, a very crude solution is available where by the underlying

data is randomized to solve this. But this results in a huge lose of

information.

� Furthermore, the methods that are more precise randomize functions

of data with the amount of randomization depending on underlying

distribution parameters that are seldom available.

� For example, in differential privacy, Laplace mechanism noise

depends on the sensitivity of the function of data which is often

unavailable.
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Question 3: Computable PoSI

� The problem of post-selection inference as posed with respect to a

universe of selection has several solutions now.

� Except in the linear regression case, there is no computable solution,

i.e., some inference procedure that is not NP-hard.

� This is somewhat similar to the `0 (sparsity) penalized linear

regression.

� The statistics used to compute simultaneous confidence intervals for

PoSI at present involve maximum over the universe.

� In the context of covaraite selection, this is the maximum over all

(sparse) subsets of covariates, which is NP-hard to compute.

Is there a computable solution to PoSI for general linear models?
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Question 3: Computable PoSI (Contd.)

� Currently, there is work in progress that provides a randomized

algorithm to compute the approximate maximum over the universe

of selection.

� These approximations yield valid, albeit conservative confidence

intervals for PoSI.

� It is not obvious what would be the best approximation to the

maximum for best performance in practice.

� It is also not clear if there is a trade-off between conservativeness

and computation.

� Computation is the main hurdle for the practical use of the existing

PoSI solutions at present.
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Conclusions

Post-selection inference is an important topic of research given the

current reproducibility crisis.

There exist several solutions in the current formulation of the PoSI

problem.

Their practical use is riddled with several obstacles and resolving them

would lead to (more) trustworthy practical data analysis.

Reference: Kuchibhotla et al. (2021) Valid Post-selection Inference in

Model-free Linear Regression, Annals of Statistics.

Thank you!
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