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Let’s Remember Cramér

Suppose Z1, . . . ,Zn are observations and we consider estimtor θ̂ that satisfies∑n
i=1 ψ(Zi , θ̂n) = 0.

MLE, OLS, GLMs and many more estimators are all obtained this way.

The classical proof of Cramér (1946) proves the Bahadur representation:

√
n(θ̂ − θ) =

1√
n

n∑
i=1

(E[ψ̇(Z1, θ)])−1ψ(Zi , θ) + op(1),

under some conditions including Z1, . . . ,Zn are iid and smoothness of ψ.

The proof is based on Taylor series expansion (a deterministic tool):

0 =
n∑

i=1

ψ(Zi , θ̂n) ≈
n∑

i=1

ψ(Zi , θ) +
n∑

i=1

ψ̇(Zi , θ)(θ̂ − θ).

Do we need Zi independent or even random? What is θ?
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Importance of Bahadur Representation

Bahadur representation is more important than asymptotic normality.

It implies asymptotic normality of estimators and Bahadur representation is
one of the most popular ways of proving asymptotic normality.

Bahadur representation is closed under smooth transformations and under
addition: (This does not hold for asym. normality in general)

If θ̂1, . . . , θ̂d satisfy the representation, then for any smooth function
f (·, ·, . . . , ·), we have

√
n(f (θ̂1, . . . , θ̂d)− f (θ1, . . . , θd)) = n−1/2 ∑n

i=1 ψf (Zi ) + op(1),

for some function ψf (·).
If θ̂1, θ̂2 satisfy the representation with Inf1 and Inf2 as influence functions,
then

√
n(α1θ̂1 +α2θ̂2−α1θ1−α2θ2) = n−1/2 ∑n

i=1[α1Inf1(Zi )+α2Inf2(Zi )]+op(1).

It is also important for validity of bootstrap/resampling procedures.

Bahadur Representation ⇒ Inference
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NBK Inequalities: Linear Regression1

1K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Start with Linear Regression

Consider regression data Zi := (Xi ,Yi ) ∈ Rd × R, 1 ≤ i ≤ n and the OLS
estimator

β̂ := argmin
θ∈Rd

n∑
i=1

(Yi − X>i θ)2 ⇔
n∑

i=1

Xi (Yi − X>i β̂) = 0.

Here ψ(Zi , θ) = Xi (Yi − X>i θ), linear in θ. Hence Taylor series is exact.

Following Cramér’s proof, we get for any β ∈ Rd ,

√
n (β̂ − β) =

1√
n

n∑
i=1

Σ̂−1Xi (Yi − X>i β), where Σ̂ :=
1

n

n∑
i=1

XiX
>
i .
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This holds for any set of observations (with Σ̂ invertible).
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This holds for any set of observations (with Σ̂ invertible).

Requires neither independence nor a (true linear) model.
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n∑
i=1

Σ̂−1Xi (Yi − X>i β), where Σ̂ :=
1

n

n∑
i=1

XiX
>
i .

If Zi satisfy a version of LLN: Σ̂ ≈ Σ for some Σ, then for any β ∈ Rd ,

√
n (β̂ − β) = (1 + op(1))

1√
n

n∑
i=1

Σ−1Xi (Yi − X>i β),

Note: Error is multiplicative not additive!!
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Formal Result for OLS

For any Σ ∈ Rd×d , set

DΣ := ‖Σ−1/2Σ̂Σ−1/2 − Ip‖op.

Theorem (Inequality for OLS Estimator)

For any set of observations Zi = (Xi ,Yi ), any Σ ∈ Rd×d and any β ∈ Rd , we have∥∥∥∥∥β̂ − β − 1

n

n∑
i=1

Σ−1Xi (Yi − X>i β)

∥∥∥∥∥
Σ

≤ DΣ

(1−DΣ)+

∥∥∥∥∥1

n

n∑
i=1

Σ−1Xi (Yi − X>i β)

∥∥∥∥∥
Σ

.

Inequality is a deterministic version of Bahadur representation.

In some cases (e.g., subsampling/cross-validation) the flexibility of choosing
arbitrary Σ, β comes in handy. Also note: DΣ ≈ 0 is same as Σ̂ ≈ Σ.

Requires no model assumptions, no randomness assumptions, no assumptions
on d/n, no independence/dependence assumptions.

Implies optimal rates, finite sample tail bounds, Berry–Esseen bounds for β̂.
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Application 1: Leave-one-out Cross-Validation
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Application 1: Leave-one-out Cross-Validation (LOOCV)

The deterministic inequality can be readily used for simplifying LOOCV.

For each 1 ≤ j ≤ n, define

β̂−j := argmin
θ∈Rd

n∑
i=1,i 6=j

(Yi − X>i θ)2 ⇔
n∑

i=1,i 6=j

Xi (Yi − X>i β̂−j) = 0.

In this case, it is intuitively clear that β̂−j is close to β̂.

Note that Σ̂−j ≈ Σ̂ for any j , where Σ̂−j = (n − 1)−1
∑n

i=1,i 6=j XiX
>
i .

Corollary (Deterministic Approximation of LOOCV)

If n ≥ 2, then simultaneously, for all 1 ≤ j ≤ n, we have∥∥∥∥∥β̂−j − β̂ − Σ̂−1Xi (Yi − X>i β̂)

n

∥∥∥∥∥
Σ̂

≤ 2D/n

(1− 2D/n)+

∥∥∥∥∥ Σ̂−1Xi (Yi − X>i β̂)

n

∥∥∥∥∥
Σ̂

,

where D := 1 + max1≤j≤n ‖Σ̂−1/2Xj‖. (Hence β̂−j ≈ β̂ + n−1Σ̂−1Xi (Yi − X>i β̂).)
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Application 2: Transformations of Response
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Application 2: Transformations of Response

In modeling, it is sometimes of interest to transform the response to match
the assumptions like Gaussianity or homoscedasticity.

Finding a “good” transformation involves some data snooping. Once again
the inequality can be used to get a result for final estimator.

Suppose G is a class of transformations under consideration and for each
g ∈ G, we have the OLS estimator

β̂g := argminθ∈Rd

∑n
i=1(g(Yi )− X>i θ)2.

For any g ∈ G, define Infg (θ) := n−1
∑n

i=1 Σ−1Xi (g(Yi )− X>i θ).

Corollary (Bahadur Representation with Transformed Response)

For any set of observations Zi = (Xi ,Yi ), any Σ, any g ∈ G and any βg ∈ Rd ,∥∥∥β̂g − βg − Infg (βg )
∥∥∥

Σ
≤ DΣ

(1−DΣ)+
‖Infg (βg )‖Σ.

In particular this holds for any random ĝ ∈ G chosen based on the data.
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Application 3: Variable Selection
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Application 3: Variable Selection

More often than not, the set of covariates in a reported model is not the
same as the set of covariates the analyst started with.

Finding a “good” set of covariates involves some data snooping.

Suppose M is a collection of models (set of covariates) and for each
M ∈M, we have the OLS estimator

β̂M := argminθ∈R|M|
∑n

i=1(Yi − X>i,Mθ)2.

Set for any M ∈M, InfM(θ) := n−1
∑n

i=1 Σ−1
M Xi,M(Yi − X>i,Mθ).

Corollary (Bahadur Representation with Variable Selection)

For any M ∈M, any ΣM , and any βM ∈ R|M|, we have∥∥∥β̂M − βM − InfM(βM)
∥∥∥

ΣM

≤ DΣ
M

(1−DΣ
M)+
‖InfM(βM)‖ΣM

,

where DΣ
M := ‖Σ−1/2

M Σ̂MΣ
−1/2
M − I|M|‖op. In particular M can be random chosen

based on the data.
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NBK Inequalities: Smooth M-estimation2

2K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function g(·). Define B(w0, η;A) := {w : ‖w − w0‖A ≤ η}.

If there exists w0 ∈ Rq and L > 0 such that∥∥∥[g̈(w0)
]− 1

2 g̈(w)
[
g̈(w0)

]− 1
2 − Iq

∥∥∥
op
≤ L‖w − w0‖g̈(w0),

whenever ‖w − w0‖g̈(w0) ≤ (3L)−1, (ratio-type continuity condition) and∥∥∥[g̈(w0)
]−1

ġ(w0)
∥∥∥
g̈(w0)

≤ 2

9L
(“Close” to zero gradient at w0).

Then ∃ a unique w? ∈ B(w0, r ; g̈(w0)) 3 ġ(w?) = 0 and∥∥∥∥w? −
[
w0 −

(
g̈(w0)

)−1
ġ(w0)

]
︸ ︷︷ ︸

First Newton Iterate

∥∥∥∥
g̈(w0)

≤ 9L

4

∥∥∥[g̈(w0)
]−1

ġ(w0)
∥∥∥2

g̈(w0)
.

Quadratic Convergence of Newton’s Algorithm.
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ġ(w0)

]
︸ ︷︷ ︸

First Newton Iterate

∥∥∥∥
g̈(w0)

≤ 9L

4

∥∥∥[g̈(w0)
]−1
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, (“Close” to zero gradient at w0).

Then ∃ a unique w? ∈ B(w0, r ; g̈(w0)) 3 ġ(w?) = 0 and∥∥∥∥w? −
[
w0 −

(
g̈(w0)

)−1
ġ(w0)

]
︸ ︷︷ ︸

First Newton Iterate

∥∥∥∥
g̈(w0)

≤ 9L

4

∥∥∥[g̈(w0)
]−1

ġ(w0)
∥∥∥2

g̈(w0)
.

Quadratic Convergence of Newton’s Algorithm.
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Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function g(·). Define B(w0, η;A) := {w : ‖w − w0‖A ≤ η}.

If there exists w0 ∈ Rq and L > 0 such that∥∥∥[g̈(w0)
]− 1

2 g̈(w)
[
g̈(w0)

]− 1
2 − Iq

∥∥∥
op
≤ L‖w − w0‖g̈(w0),

whenever ‖w − w0‖g̈(w0) ≤ (3L)−1, (ratio-type Lipschitz condition) and∥∥∥[g̈(w0)
]−1

ġ(w0)
∥∥∥
g̈(w0)

≤ 2

9L
, (“Close” to zero gradient at w0).

Then ∃ a unique w? ∈ B(w0, r ; g̈(w0)) 3 ġ(w?) = 0 and∥∥∥∥ (w? − w0
)︸ ︷︷ ︸

Estimation Err.

+
(
g̈(w0)

)−1
ġ(w0)︸ ︷︷ ︸

Influence function

∥∥∥∥
g̈(w0)

≤ 9L

4

∥∥∥∥ [g̈(w0)
]−1

ġ(w0)︸ ︷︷ ︸
Influence function

∥∥∥∥2

g̈(w0)

.

Finite Sample bnd Bahadur Representation of M-estimator.
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What have we gained?

No randomness assumptions on the data; result is deterministic.

No independence assumptions on observations.

No model assumptions. Allows study under misspecification.

No asymptotics; everything holds at any finite sample size.

Bounds are in terms of g̈ and ġ that are averages if g(θ) =
∑n

i=1 `(Zi , θ).
Averages studied for more than a century under various settings.

Disadvantage: Requires smoothness on the function.

Under whatever dependence,

LLN for g̈(w 0) and CLT for ġ(w 0) ⇒ CLT for w ? − w 0.

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 18 / 24



What have we gained?

No randomness assumptions on the data; result is deterministic.

No independence assumptions on observations.

No model assumptions. Allows study under misspecification.

No asymptotics; everything holds at any finite sample size.

Bounds are in terms of g̈ and ġ that are averages if g(θ) =
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Application: Logistic/Poisson Regression
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Application: Logistic/Poisson Regression

For either ψ(u) = log(1 + exp(u)), Logistic or ψ(u) = exp(u) Poisson, let

β̂ := argminθ∈Rd Ln(θ), where Ln(θ) :=
∑n

i=1

[
ψ(X>i θ)− YiX

>
i θ
]
,

Define for any θ ∈ Rd and Σ ∈ Rd×d , DΣ(θ) := ‖Σ−1/2L̈n(θ)Σ−1/2 − Id‖op.

Theorem

For any β ∈ Rd and any Σ ∈ Rd×d , if

max
1≤i≤n

‖Σ−1/2Xi‖ × ‖Σ−1L̇n(β)‖Σ ≤ 0.19(1−DΣ(β))+,

then

‖β̂n − β + Σ−1L̇n(β)‖Σ

‖Σ−1L̇n(β)‖Σ

≤ DΣ(β)

(1−DΣ(β))+
+

10 maxi ‖Σ−1/2Xi‖‖Σ−1L̇n(β)‖Σ

(1−DΣ(β))2
+

.

Proves “CLT” if dim(Xi) = o(
√
n).
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Summary and Conclusions
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Some Comments

Deterministic inequalities as above proving Bahadur representation are what
we call NBK (Newton-Bahadur-Kantarovich) inequalities.

Following the result for logistic and Poisson regression, applications like
cross-validation, transformations, variable selection as done for linear
regression can be carried out easily.

The additional assumption above comes from non-linearity of the estimating
function which also leads to an additional term in the remainder.

Newton-Kantarovich theorem was developed to study convergence of Newton
iterates and it implies Bahadur representation.

This thinking leads to some new first order expansion results for
penalized/regularized estimators in high-dimensions.

NBK inequalities are also proved for Cox proportional hazards model,
Non-linear least squares, Equality constrained M-estimators among others.
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Some Comments Contd.

In order to apply NBK inequalities to complete the study of an estimator in
any setting, one needs to choose Σ, β and bound the remainder terms in the
inequalities.

For β̂ defined as a minimizer of Ln(·), a canonical choice of Σ, β is given by

β := argmin
θ∈Rd

E[Ln(θ)] and Σ := E[L̈n(β)].

For independent as well as a weakly dependent sub-Gaussian observations,

max{DΣ(β), ‖Σ−1L̇n(β)‖Σ} = Op(
√
d/n),

which implies optimal rates for Bahadur representation.

In case of variable selection, we have

max
|M|≤k

max{DΣ
M(βM), ‖Σ−1

M L̇n(βM)‖ΣM
} = Op(

√
k log(ed/k)/n).

This solves the post-selection inference problem with increasing dimension
and much more.
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Summary and Conclusions

We have introduced the idea of studying estimators in a deterministic way.

NBK inequalities solve almost all problems about an estimator in one shot:

They imply Berry–Esseen type bounds and hence (finite sample) normal
approximation results can follow.
They allow for understanding the effects of increasing dependence between
observations, increasing dimension.

Importantly in the context of reproducibility, NBK inequalities allow study of
estimators obtained after data snooping.

In particular, it solves the problem of post-selection inference in a unified way
and in the most general setting available till date.

Further in the context of cross-validation/subsampling, NBK inequalities
show how computation can be reduced at the expense of very small
approximation error.

Application of a (proximal) variant of Newton’s method for penalized or
constrained estimators leads to first order expansion results.

Thanks!
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Application: Post-selection Inference

Uniform linear representation result allows us to claim

max
M∈M

‖β̂M − βM‖∞ ≈ max
M∈M

∥∥∥∥∥1

n

n∑
i=1

ψM(Xi ,Yi )

∥∥∥∥∥
∞

,

for some vector functions ψM .

High-dimensional CLT implies

max
M∈M

∥∥∥∥∥1

n

n∑
i=1

ψM(Xi ,Yi )

∥∥∥∥∥
∞

L
≈ max

M∈M
‖GM‖∞,

for some Gaussian process (GM)M∈M.

Corresponding multiplier bootstrap implies

max
M∈M

‖β̂M − βM‖∞
L
≈ max

M∈M

∥∥∥∥∥1

n

n∑
i=1

gi ψ̂M(Xi ,Yi )

∥∥∥∥∥
∞

Cond. on (Xi ,Yi ),

for g1, . . . , gn ∼ N(0, 1) (iid).
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PoSI Contd.

To finish inference, need to compute

max
M∈M

∥∥∥∥∥1

n

n∑
i=1

gi ψ̂M(Xi ,Yi )

∥∥∥∥∥
∞

,

for a given set of models M.

Number the models in M as 1, 2, . . . ,N. We have

xj :=

∥∥∥∥∥1

n

n∑
i=1

gi ψ̂j(Xi ,Yi )

∥∥∥∥∥
∞

.

Need to compute (at least approximately)

‖x‖∞ = max
1≤j≤N

|xj |,

for the vector x = (x1, . . . , xN).
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Maximum Computation3

Observe that 1

N

N∑
j=1

xqj

1/q

≤ ‖x‖∞ ≤ N1/q

 1

N

N∑
j=1

xqj

1/q

.

If W is a random variable drawn uniformly from {x1, . . . , xN}, then

(E[W q])1/q ≤ ‖x‖∞ ≤ N1/q(E[W q])1/q.

Hence (multiplicatively) approximating the maximum is same as
approximating the expectation of a random variable given access to
independent draws.

How many draws required to find E[W q] upto a factor of
(1± ε)?

3Joint work (in progress) with Junhui Cai
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Summary

We have shown how the analysis of Newton’s method can be used to
derive finite sample results for M-estimators.

This idea allow “easier” study of constrained/penalized M-estimators.

Connections to AMP??

These results imply post-selection inference for various estimation procedures
including GLMs, Cox Model, NonLinear Least Squares, Equality
Constrained MLE.

Realizing PoSI in practice requires solving a maximum problem.

PoSI → Maximum Estimation → Mean Estimation.

achievable sample complexity bounds for maximum??
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Maximum Computation (Contd.)

An estimator ÊW of E[W ] > 0 is an (ε, δ) approximate if

P

(∣∣∣∣∣ ÊW

E[W ]
− 1

∣∣∣∣∣ ≤ ε
)
≥ 1− δ.

If a random variable W ≥ 0 is known to satisfy

Var(W ) ≤ L2(E[W ])2

then

nε,δ �
2L2

ε2
log

(
1√
2πδ

)
.

If a random variable W ∈ [0,B] for some known B, then

nε,δ � C max

{
Var(W )

ε2(E[W ])2
,

B

εE[W ]

}
log

(
1

δ

)
,

for some universal constant C > 0.
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