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Let's Remember Cramér

@ Suppose 21, ..., Z, are observations and we consider estimtor 0 that satisfies

Z;;l 'I)Z}(Zia é\n) =0.
e MLE, OLS, GLMs and many more estimators are all obtained this way.

@ The classical proof of Cramér (1946) proves the Bahadur representation:

. 1 s 1
V(0 —0) = 7 ;(E[t/)(zl, ) ¥(Zi, 0) + op(1),
under some conditions including Zi, ..., Z, are iid and smoothness of 1.

@ The proof is based on Taylor series expansion (a deterministic tool):

oz;w(z,-,én) ~ §¢(z;,0)+;¢(zi,9)(9_9)_
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Let's Remember Cramér

@ Suppose 21, ..., Z, are observations and we consider estimtor 0 that satisfies

Z;;l 'I)Z}(Zia é\n) =0.
e MLE, OLS, GLMs and many more estimators are all obtained this way.

@ The classical proof of Cramér (1946) proves the Bahadur representation:

. 1 s 1
V(0 —0) = 7 ;(E[t/)(zl, ) ¥(Zi, 0) + op(1),
under some conditions including Zi, ..., Z, are iid and smoothness of 1.

@ The proof is based on Taylor series expansion (a deterministic tool):
0=2 W(Z.0,) ~ Y (Z10)+ ) u(Z.0)(0~0).
i=1 i=1 i=1

Do we need Z; independent or even random? What is 67
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Importance of Bahadur Representation

@ Bahadur representation is more important than asymptotic normality.

@ It implies asymptotic normality of estimators and Bahadur representation is
one of the most popular ways of proving asymptotic normality.

@ Bahadur representation is closed under smooth transformations and under
addition: (This does not hold for asym. normality in general)
o If él, e 4 satisfy the representation, then for any smooth function
f(yy...y"), we have

\/E(f(éla s 7éd) - f(91, BERE) ed)) = n71/2 27:1 wf(zi) + OP(1)7

for some function ¢ (-).
o If 01,0, satisfy the representation with Inf; and Inf; as influence functions,

then
\/E(Oélé\l +CM2§2 —a16:1 7&202) = n71/2 27:1 [allnf1(Z,-)+oc2Inf2(Z,-)]+op(1).

@ It is also important for validity of bootstrap/resampling procedures.
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@ Bahadur representation is more important than asymptotic normality.

@ It implies asymptotic normality of estimators and Bahadur representation is
one of the most popular ways of proving asymptotic normality.

@ Bahadur representation is closed under smooth transformations and under
addition: (This does not hold for asym. normality in general)
o If él, e 4 satisfy the representation, then for any smooth function
f(yy...y"), we have

\/E(f(éla s 7éd) - f(91, BERE) ed)) = n71/2 27:1 wf(zi) + OP(1)7

for some function ¢ (-).
o If 01,0, satisfy the representation with Inf; and Inf; as influence functions,

then
\/E(Oélé\l +CM2§2 —a16:1 7&202) = n71/2 Zin:l [allnf1(Z,-)+oc2Inf2(Z,-)]+op(1).

@ It is also important for validity of bootstrap/resampling procedures.

Bahadur Representation = Inference
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NBK Inequalities: Linear Regression?

1K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Start with Linear Regression

o Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

Bi=argmin 3 (Y- X0 & D X(Yi-XB)=o.
0eR? i=1 i=1
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0eR? =y

e Here ¥(Z;,0) = Xi(Y: — X."0), linear in 0. Hence Taylor series is exact.
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Start with Linear Regression

Consider regression data Z; := (X;, Y;) € RY x R,1 < i < n and the OLS
estimator

= argmin Z -X'0? < ZX:'(Y:‘ - X'B)=o.
i=1

0erd

Here ¢(Z;,0) = Xi(Y; — X;"0), linear in 6. Hence Taylor series is exact.

Following Cramér's proof, we get for any 3 € R,

N 1<
V(B —5) sz XY — X" B), where z::;i;x,-xf.

e This holds for any set of observations (with 3 invertible).
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Start with Linear Regression

e Consider regression data Z; := (X;, Y;) € R? x R,1 < i < n and the OLS
estimator

= argmin Z -X'0? < ZX:'(Y:' - X'B)=o0.

0erR! 7 i=1

Here ¢(Z;,0) = Xi(Y; — X;"0), linear in 6. Hence Taylor series is exact.
Following Cramér’s proof, we get for any 3 € RY,

. 1<
V(B - B) sz IX;(Yi — X."3), where Z::;Z;X,-X,T.

This holds for any set of observations (with 5 invertible).

Requires neither independence nor a (true linear) model.
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Start with Linear Regression

o Consider regression data Z; := (X;, Y;) € R x R,1 < i < n and the OLS
estimator

—argmlnz -X'0? < ZX XTﬂ =0.
1SS

e Here 1(Z;,0) = X;(Y; — X;"0), linear in 0. Hence Taylor series is exact.
o Following Cramér's proof, we get for any 3 € R,

N 1<
V(B —5) Zz IXi(Yi— X[B), where :==3 XX
\[ N4
o If Z; satisfy a version of LLN: 3 ~ ¥ for some ¥, then for any 3 € RY,
Vn(B—8) = (1+0p(1) WZZ (Y - X B),

Note: Error is multiplicative not additive!!
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Formal Result for OLS

For any ¥ € R9%9 set

= TR Y2 fope

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any ¥ € R4 and any 3 € RY, we have

5—722 IX:(Y; — X B) Zz XY — X" B)

i=1

=@-o), Df>+

P >

@ Inequality is a deterministic version of Bahadur representation.
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@ Inequality is a deterministic version of Bahadur representation.

o In some cases (e.g., subsampling/cross-validation) the flexibility of choosing
arbitrary ¥, 3 comes in handy. Also note: D* ~ 0 is same as Y AT

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 8 /24



Formal Result for OLS

For any ¥ € R9%9 set

= TR Y2 fope

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any ¥ € R4 and any 3 € RY, we have

D}:

1ot T

i=1

A 1 -1 T
6—5—522 Xi(Yi = X" 8)

>

@ Inequality is a deterministic version of Bahadur representation.

o In some cases (e.g., subsampling/cross-validation) the flexibility of choosing
arbitrary ¥, 3 comes in handy. Also note: D* ~ 0 is same as Y AT

@ Requires no model assumptions, no randomness assumptions, no assumptions
on d/n, no independence/dependence assumptions.
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Formal Result for OLS

For any ¥ € R9%9 set

= TR Y2 fope

Theorem (Inequality for OLS Estimator)

For any set of observations Z; = (X;, Y;), any ¥ € R4 and any 3 € RY, we have

D}:

1ot T

i=1

A 1 -1 T
ﬁ—ﬁ—E;Z Xi(Yi = X" 8)

>

@ Inequality is a deterministic version of Bahadur representation.

o In some cases (e.g., subsampling/cross-validation) the flexibility of choosing
arbitrary ¥, 3 comes in handy. Also note: D* ~ 0 is same as Y AT

@ Requires no model assumptions, no randomness assumptions, no assumptions
on d/n, no independence/dependence assumptions.

o Implies optimal rates, finite sample tail bounds, Berry—Esseen bounds for B.
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Application 1: Leave-one-out Cross-Validation
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Application 1: Leave-one-out Cross-Validation (LOOCV)

@ The deterministic inequality can be readily used for simplifying LOOCV.
@ For each 1 <j < n, define

B_; = argmin Z =XT0? e > X(Yi-X'B)) =
OER! 1 i=1,i4j
@ In this case, it is intuitively clear that B,j is close to 3

o Note that 5 ; ~ 5 for any j, where & _; = (n —1)~" Z;’Zl’i# Xi X"

Corollary (Deterministic Approximation of LOOCV)
If n > 2, then simultaneously, for all 1 < j < n, we have

N
p-j—B— (

29/n
- (1-29/n)4

£-1X(Y; = X7 B)

n

b

b

where © 1= 1+ maxi<j<, [|[E7Y2X|. (Hence B~ + n'S71X(Y; — X' 3).)
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Application 2: Transformations of Response
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Application 2: Transformations of Response

@ In modeling, it is sometimes of interest to transform the response to match
the assumptions like Gaussianity or homoscedasticity.

o Finding a “good” transformation involves some data snooping. Once again
the inequality can be used to get a result for final estimator.

@ Suppose G is a class of transformations under consideration and for each
g € G, we have the OLS estimator

Bg '= argmingcpa Z;’:l(g(Y,-) - XiTe)z'

For any g € G, define Inf,(0) :=n~1 > 1 T 1Xi(g( V) — X" 6).

Corollary (Bahadur Representation with Transformed Response)
For any set of observations Z; = (X;, Y;), any ¥, any g € G and any 3; € RY,

>

[ = 6 = 1n1,80)], < Ty 185 (B

In particular this holds for any random g € G chosen based on the data.

12 / 24
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Application 3: Variable Selection
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Application 3: Variable Selection

@ More often than not, the set of covariates in a reported model is not the
same as the set of covariates the analyst started with.

o Finding a "good" set of covariates involves some data snooping.
@ Suppose M is a collection of models (set of covariates) and for each
M € M, we have the OLS estimator

B/\/I = argmingegim yor (Vi — XITM9)2.

Set for any M € M, Infy(0) :=n"t 30 T X m(Y: — X, Tu0)-

Corollary (Bahadur Representation with Variable Selection)

For any M € M, any Xy, and any Bm € RIMI, we have
. D%,
— — I < —>——||IT
[Bua = 1 = 20 (Bm|, < Ty NGl

where DY, := ||Z,T41/2fMZ,\_,,1/2 — hmllop- In particular M can be random chosen
based on the data. |
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NBK Inequalities: Smooth M-estimation?

2K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172
Thanks to Mateo Wirth, Bikram Karmakar.
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Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function g(-). Define B(w®,n; A) := {w : ||w — wP||a < n}.
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Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function g(-). Define B(w®,n; A) := {w : ||w — wP||a < n}.
If there exists w® € RY and L > 0 such that

EC%)

1 1
PE(w) [E0O)] 7l < Lllw — Wl

whenever [[w — w050y < (3L)7!, (ratio-type continuity condition) and

Arun Kuchibhotla (UPenn)
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Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function g(-). Define B(w®,n; A) := {w : ||w — wP||a < n}.

If there exists w® € R? and L > 0 such that

| w72 g(w) [g(w?)]

1 1
2 2 —/qH S LHW—WO”é(WO)7
op

whenever [[w — w050y < (3L)7!, (ratio-type continuity condition) and

2
g(wo)Hé(Wo) < ol (“Close” to zero gradient at w?).
Then
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Semi-local Convergence: Newton-Kantorovich Theorem

(ratio-type Lipschitz condition)

(“Close” to zero gradient at w?).

Then
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Semi-local Convergence: Newton-Kantorovich Theorem

(ratio-type Lipschitz condition)

(“Close” to zero gradient at w?).

Then 3 a unique w* € B(w?, r; g(w®)) 3 g(w*) = 0 and

Quadratic Convergence of Newton’s Algorithm.

IR TR e

w = [w = (g(w") " g(w")] -

First Newton lterate

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 16 / 24



Semi-local Convergence: Newton-Kantorovich Theorem

(ratio-type Lipschitz condition)

(“Close” to zero gradient at w?°).

Then 3 a unique w* € B(w?, r; g(w°)) > g(w*) =0 and

. -1, oL || ;.. -1, 2
| w0 o) ewd)| < B o) e |
Y - &(wP) ——llg(w?)
Estimation Err. Influence function Influence function

Finite Sample bnd Bahadur Representation of M-estimator.
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What have we gained?

@ No randomness assumptions on the data; result is deterministic.

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 18 / 24



What have we gained?

@ No randomness assumptions on the data; result is deterministic.

@ No independence assumptions on observations.

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 18 / 24



What have we gained?

@ No randomness assumptions on the data; result is deterministic.
@ No independence assumptions on observations.

@ No model assumptions. Allows study under misspecification.

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 18/



What have we gained?

@ No randomness assumptions on the data; result is deterministic.

No independence assumptions on observations.

No model assumptions. Allows study under misspecification.

@ No asymptotics; everything holds at any finite sample size.

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 18 / 24



What have we gained?

@ No randomness assumptions on the data; result is deterministic.

No independence assumptions on observations.

No model assumptions. Allows study under misspecification.

@ No asymptotics; everything holds at any finite sample size.
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What have we gained?

@ No randomness assumptions on the data; result is deterministic.
@ No independence assumptions on observations.

@ No model assumptions. Allows study under misspecification.

@ No asymptotics; everything holds at any finite sample size.

@ Bounds are in terms of g and g that are averages if g(6) = >_I_, {(Z;,0).

Averages studied for more than a century under various settings.

@ Disadvantage: Requires smoothness on the function.

Under whatever dependence,

LLN for g(w°) and CLT for g(w®) = CLT for w* — w°.
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Application: Logistic/Poisson Regression

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019 19 / 24



Application: Logistic/Poisson Regression

@ For either 1(u) = log(1 4 exp(u)), Logistic or 1(u) = exp(u) Poisson, let

B = argmingcpa Lo(0), where L,(6) :=3", [0(X;"0) — YViX."6],

o Define for any § € RY and ¥ € RY*?, D>(0) := [T~ V2L,(0)Z /2 — Iy|op-

Theorem
For any B € RY and any ¥ € R9¥9, if

max |Z72Xi|| x |7 La(8) ]z < 0.19(1 — DX(B))+,

1<i<n
then

18, — 8 +_Z‘1Ln(ﬁ)||z - __ DB LWl IZ=22X || =~ La(B) |5
I=-L,8) s~ (1-DB))+ (1-Dx(8)); '

Proves “CLT” if dim(X;) = o(y/n).
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Summary and Conclusions
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Some Comments

@ Deterministic inequalities as above proving Bahadur representation are what
we call NBK (Newton-Bahadur-Kantarovich) inequalities.
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@ Following the result for logistic and Poisson regression, applications like
cross-validation, transformations, variable selection as done for linear
regression can be carried out easily.
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Some Comments

@ Deterministic inequalities as above proving Bahadur representation are what
we call NBK (Newton-Bahadur-Kantarovich) inequalities.

@ Following the result for logistic and Poisson regression, applications like
cross-validation, transformations, variable selection as done for linear
regression can be carried out easily.

@ The additional assumption above comes from non-linearity of the estimating
function which also leads to an additional term in the remainder.

@ Newton-Kantarovich theorem was developed to study convergence of Newton
iterates and it implies Bahadur representation.

@ This thinking leads to some new first order expansion results for
penalized/regularized estimators in high-dimensions.

@ NBK inequalities are also proved for Cox proportional hazards model,
Non-linear least squares, Equality constrained M-estimators among others.
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Some Comments Contd.

@ In order to apply NBK inequalities to complete the study of an estimator in
any setting, one needs to choose ¥, 5 and bound the remainder terms in the
inequalities.

o For /3 defined as a minimizer of L,(-), a canonical choice of ¥, is given by

B = a;gerﬂ'gdin E[L,(0)] and X :=E[L.(B)].

@ For independent as well as a weakly dependent sub-Gaussian observations,

max{D¥(6), [|E7 La(B) £} = Op(v/d/n),

which implies optimal rates for Bahadur representation.

@ In case of variable selection, we have

max max{Dy(Bm), =3 La(Bu)lizs} = Op(+/klog(ed/k)/n).

IM|<k

This solves the post-selection inference problem with increasing dimension
and much more.
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Summary and Conclusions

@ We have introduced the idea of studying estimators in a deterministic way.

@ NBK inequalities solve almost all problems about an estimator in one shot:

e They imply Berry—Esseen type bounds and hence (finite sample) normal
approximation results can follow.

e They allow for understanding the effects of increasing dependence between
observations, increasing dimension.

@ Importantly in the context of reproducibility, NBK inequalities allow study of
estimators obtained after data snooping.

@ In particular, it solves the problem of post-selection inference in a unified way
and in the most general setting available till date.

@ Further in the context of cross-validation/subsampling, NBK inequalities
show how computation can be reduced at the expense of very small
approximation error.

@ Application of a (proximal) variant of Newton's method for penalized or
constrained estimators leads to first order expansion results.
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Summary and Conclusions

@ We have introduced the idea of studying estimators in a deterministic way.

@ NBK inequalities solve almost all problems about an estimator in one shot:

e They imply Berry—Esseen type bounds and hence (finite sample) normal
approximation results can follow.

e They allow for understanding the effects of increasing dependence between
observations, increasing dimension.

@ Importantly in the context of reproducibility, NBK inequalities allow study of
estimators obtained after data snooping.

@ In particular, it solves the problem of post-selection inference in a unified way
and in the most general setting available till date.

@ Further in the context of cross-validation/subsampling, NBK inequalities
show how computation can be reduced at the expense of very small
approximation error.

@ Application of a (proximal) variant of Newton's method for penalized or
constrained estimators leads to first order expansion results.

Thanks!
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Application: Post-selection Inference

@ Uniform linear representation result allows us to claim

b

inax NBm = Bulloo 2 max,

1 n
- ;w(x,-, Y;)

o

for some vector functions 1.
o High-dimensional CLT implies

max
MeMm

1 n
- ;w(x,-, Y;)

L
~ G
7231 Gl

o0

for some Gaussian process (Gp)men.
o Corresponding multiplier bootstrap implies

Cond. on (X;, Y)),

I~ -
=D &im(X:, Y7)
i=1

~ L
nax 16m — Bmlle = nax
o0

for g1,...,8, ~ N(0,1) (iid).
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PoSI Contd.

@ To finish inference, need to compute

1~ -
- i Xi7\/i 5
max n;gm )

o0

for a given set of models M.
@ Number the models in M as 1,2,..., N. We have

I~ -
Xj = angﬂbj(Xi, Yi)
i=1

oo

@ Need to compute (at least approximately)

Ixlloo = max Ixil,

for the vector x = (x1,...,xn).

Arun Kuchibhotla (UPenn) NBK Inequalities 03 July, 2019



Maximum Computation®

@ Observe that

1/q 1/q

N N
*Z < lxlloe < NY9 Z

N

2 \

e If W is a random variable drawn uniformly from {x,...,xny}, then
EWDYT < xee < NYIEW)HA,

@ Hence (multiplicatively) approximating the maximum is same as
approximating the expectation of a random variable given access to
independent draws.

How many draws required to find E[W?] upto a factor of
(1+e)?

3Joint work (in progress) with Junhui Cai
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@ We have shown how the analysis of Newton’s method can be used to
derive finite sample results for M-estimators.

@ This idea allow “easier” study of constrained/penalized M-estimators.

@ Connections to AMP7?7?

@ These results imply post-selection inference for various estimation procedures
including GLMs, Cox Model, NonLinear Least Squares, Equality
Constrained MLE.

@ Realizing PoSl in practice requires solving a maximum problem.

PoSI — Maximum Estimation — Mean Estimation.

@ achievable sample complexity bounds for maximum??
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Maximum Computation (Contd.)

e An estimator £y of E[W] > 0 is an (e, §) approximate if

IE”( <E> > 1-46.

o If a random variable W > 0 is known to satisfy

éiw ~1
E[w]

Var(W) < [3(E[W])?

then

n = 2—L2|o L
6,6 - 82 g \/g(s .

e If a random variable W € [0, B] for some known B, then

o = o ity % (5)

for some universal constant C > 0.
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