Randomness-free Study of M-estimators

NBK Inequalities

Arun Kumar Kuchibhotla

The Wharton School,
University of Pennsylvania.

03 July, 2019

Outline

(1) Introduction
(2) NBK Inequalities: Linear Regression

- Application 1: Leave-one-out Cross-Validation
- Application 2: Transformations of Response
- Application 3: Variable Selection
(3) NBK Inequalities: Smooth M-estimation
- Application: Logistic/Poisson Regression
(4) Summary and Conclusions

Introduction

Let's Remember Cramér

- Suppose Z_{1}, \ldots, Z_{n} are observations and we consider estimtor $\hat{\theta}$ that satisfies

$$
\sum_{i=1}^{n} \psi\left(Z_{i}, \hat{\theta}_{n}\right)=0
$$

- MLE, OLS, GLMs and many more estimators are all obtained this way.
- The classical proof of Cramér (1946) proves the Bahadur representation:

$$
\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\mathbb{E}\left[\dot{\psi}\left(Z_{1}, \theta\right)\right]\right)^{-1} \psi\left(Z_{i}, \theta\right)+o_{p}(1),
$$

under some conditions including Z_{1}, \ldots, Z_{n} are iid and smoothness of ψ.

- The proof is based on Taylor series expansion (a deterministic tool):

$$
0=\sum_{i=1}^{n} \psi\left(Z_{i}, \hat{\theta}_{n}\right) \approx \sum_{i=1}^{n} \psi\left(Z_{i}, \theta\right)+\sum_{i=1}^{n} \dot{\psi}\left(Z_{i}, \theta\right)(\hat{\theta}-\theta) .
$$

Let's Remember Cramér

- Suppose Z_{1}, \ldots, Z_{n} are observations and we consider estimtor $\hat{\theta}$ that satisfies

$$
\sum_{i=1}^{n} \psi\left(Z_{i}, \hat{\theta}_{n}\right)=0
$$

- MLE, OLS, GLMs and many more estimators are all obtained this way.
- The classical proof of Cramér (1946) proves the Bahadur representation:

$$
\sqrt{n}(\hat{\theta}-\theta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\mathbb{E}\left[\dot{\psi}\left(Z_{1}, \theta\right)\right]\right)^{-1} \psi\left(Z_{i}, \theta\right)+o_{p}(1),
$$

under some conditions including Z_{1}, \ldots, Z_{n} are iid and smoothness of ψ.

- The proof is based on Taylor series expansion (a deterministic tool):

$$
0=\sum_{i=1}^{n} \psi\left(Z_{i}, \hat{\theta}_{n}\right) \approx \sum_{i=1}^{n} \psi\left(Z_{i}, \theta\right)+\sum_{i=1}^{n} \dot{\psi}\left(Z_{i}, \theta\right)(\hat{\theta}-\theta) .
$$

Do we need Z_{i} independent or even random? What is θ ?

Importance of Bahadur Representation

- Bahadur representation is more important than asymptotic normality.
- It implies asymptotic normality of estimators and Bahadur representation is one of the most popular ways of proving asymptotic normality.
- Bahadur representation is closed under smooth transformations and under addition: (This does not hold for asym. normality in general)
- If $\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}$ satisfy the representation, then for any smooth function $f(\cdot, \cdot, \ldots, \cdot)$, we have

$$
\sqrt{n}\left(f\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}\right)-f\left(\theta_{1}, \ldots, \theta_{d}\right)\right)=n^{-1 / 2} \sum_{i=1}^{n} \psi_{f}\left(Z_{i}\right)+o_{p}(1)
$$

for some function $\psi_{f}(\cdot)$.

- If $\hat{\theta}_{1}, \hat{\theta}_{2}$ satisfy the representation with Inf_{1} and Inf_{2} as influence functions, then

$$
\sqrt{n}\left(\alpha_{1} \hat{\theta}_{1}+\alpha_{2} \hat{\theta}_{2}-\alpha_{1} \theta_{1}-\alpha_{2} \theta_{2}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left[\alpha_{1} \operatorname{Inf}_{1}\left(Z_{i}\right)+\alpha_{2} \operatorname{Inf}_{2}\left(Z_{i}\right)\right]+o_{p}(1)
$$

- It is also important for validity of bootstrap/resampling procedures.

Importance of Bahadur Representation

- Bahadur representation is more important than asymptotic normality.
- It implies asymptotic normality of estimators and Bahadur representation is one of the most popular ways of proving asymptotic normality.
- Bahadur representation is closed under smooth transformations and under addition: (This does not hold for asym. normality in general)
- If $\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}$ satisfy the representation, then for any smooth function $f(\cdot, \cdot, \ldots, \cdot)$, we have

$$
\sqrt{n}\left(f\left(\hat{\theta}_{1}, \ldots, \hat{\theta}_{d}\right)-f\left(\theta_{1}, \ldots, \theta_{d}\right)\right)=n^{-1 / 2} \sum_{i=1}^{n} \psi_{f}\left(Z_{i}\right)+o_{p}(1)
$$

for some function $\psi_{f}(\cdot)$.

- If $\hat{\theta}_{1}, \hat{\theta}_{2}$ satisfy the representation with Inf_{1} and Inf_{2} as influence functions, then

$$
\sqrt{n}\left(\alpha_{1} \hat{\theta}_{1}+\alpha_{2} \hat{\theta}_{2}-\alpha_{1} \theta_{1}-\alpha_{2} \theta_{2}\right)=n^{-1 / 2} \sum_{i=1}^{n}\left[\alpha_{1} \operatorname{Inf}_{1}\left(Z_{i}\right)+\alpha_{2} \operatorname{Inf}_{2}\left(Z_{i}\right)\right]+o_{p}(1)
$$

- It is also important for validity of bootstrap/resampling procedures.

Bahadur Representation \Rightarrow Inference

NBK Inequalities: Linear Regression ${ }^{1}$

${ }^{1}$ K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172 Thanks to Mateo Wirth, Bikram Karmakar.

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \Leftrightarrow \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \quad \Leftrightarrow \quad \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

- Here $\psi\left(Z_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)$, linear in θ. Hence Taylor series is exact.

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \Leftrightarrow \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

- Here $\psi\left(Z_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)$, linear in θ. Hence Taylor series is exact.
- Following Cramér's proof, we get for any $\beta \in \mathbb{R}^{d}$,

$$
\sqrt{n}(\hat{\beta}-\beta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right), \quad \text { where } \quad \hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top}
$$

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \quad \Leftrightarrow \quad \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

- Here $\psi\left(Z_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)$, linear in θ. Hence Taylor series is exact.
- Following Cramér's proof, we get for any $\beta \in \mathbb{R}^{d}$,

$$
\sqrt{n}(\hat{\beta}-\beta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right), \quad \text { where } \quad \hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} .
$$

- This holds for any set of observations (with $\hat{\Sigma}$ invertible).

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \Leftrightarrow \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

- Here $\psi\left(Z_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)$, linear in θ. Hence Taylor series is exact.
- Following Cramér's proof, we get for any $\beta \in \mathbb{R}^{d}$,

$$
\sqrt{n}(\hat{\beta}-\beta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right), \quad \text { where } \quad \hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} .
$$

- This holds for any set of observations (with $\hat{\Sigma}$ invertible).
- Requires neither independence nor a (true linear) model.

Start with Linear Regression

- Consider regression data $Z_{i}:=\left(X_{i}, Y_{i}\right) \in \mathbb{R}^{d} \times \mathbb{R}, 1 \leq i \leq n$ and the OLS estimator

$$
\hat{\beta}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \quad \Leftrightarrow \quad \sum_{i=1}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)=0 .
$$

- Here $\psi\left(Z_{i}, \theta\right)=X_{i}\left(Y_{i}-X_{i}^{\top} \theta\right)$, linear in θ. Hence Taylor series is exact.
- Following Cramér's proof, we get for any $\beta \in \mathbb{R}^{d}$,

$$
\sqrt{n}(\hat{\beta}-\beta)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right), \quad \text { where } \quad \hat{\Sigma}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{\top} .
$$

- If Z_{i} satisfy a version of LLN: $\hat{\Sigma} \approx \Sigma$ for some Σ, then for any $\beta \in \mathbb{R}^{d}$,

$$
\sqrt{n}(\hat{\beta}-\beta)=\left(1+o_{p}(1)\right) \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)
$$

Note: Error is multiplicative not additive!!

Formal Result for OLS

For any $\Sigma \in \mathbb{R}^{d \times d}$, set

$$
\mathcal{D}^{\Sigma}:=\left\|\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}-I_{p}\right\|_{o p}
$$

Theorem (Inequality for OLS Estimator)

For any set of observations $Z_{i}=\left(X_{i}, Y_{i}\right)$, any $\Sigma \in \mathbb{R}^{d \times d}$ and any $\beta \in \mathbb{R}^{d}$, we have

$$
\left\|\hat{\beta}-\beta-\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} \leq \frac{\mathcal{D}^{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}\right)_{+}}\left\|\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} .
$$

- Inequality is a deterministic version of Bahadur representation.

Formal Result for OLS

For any $\Sigma \in \mathbb{R}^{d \times d}$, set

$$
\mathcal{D}^{\Sigma}:=\left\|\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}-I_{p}\right\|_{o p}
$$

Theorem (Inequality for OLS Estimator)

For any set of observations $Z_{i}=\left(X_{i}, Y_{i}\right)$, any $\Sigma \in \mathbb{R}^{d \times d}$ and any $\beta \in \mathbb{R}^{d}$, we have

$$
\left\|\hat{\beta}-\beta-\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} \leq \frac{\mathcal{D}^{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}\right)_{+}}\left\|\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} .
$$

- Inequality is a deterministic version of Bahadur representation.
- In some cases (e.g., subsampling/cross-validation) the flexibility of choosing arbitrary Σ, β comes in handy. Also note: $\mathcal{D}^{\Sigma} \approx 0$ is same as $\hat{\Sigma} \approx \Sigma$.

Formal Result for OLS

For any $\Sigma \in \mathbb{R}^{d \times d}$, set

$$
\mathcal{D}^{\Sigma}:=\left\|\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}-I_{p}\right\|_{o p}
$$

Theorem (Inequality for OLS Estimator)

For any set of observations $Z_{i}=\left(X_{i}, Y_{i}\right)$, any $\Sigma \in \mathbb{R}^{d \times d}$ and any $\beta \in \mathbb{R}^{d}$, we have

$$
\left\|\hat{\beta}-\beta-\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} \leq \frac{\mathcal{D}^{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}\right)_{+}}\left\|\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} .
$$

- Inequality is a deterministic version of Bahadur representation.
- In some cases (e.g., subsampling/cross-validation) the flexibility of choosing arbitrary Σ, β comes in handy. Also note: $\mathcal{D}^{\Sigma} \approx 0$ is same as $\hat{\Sigma} \approx \Sigma$.
- Requires no model assumptions, no randomness assumptions, no assumptions on d / n, no independence/dependence assumptions.

Formal Result for OLS

For any $\Sigma \in \mathbb{R}^{d \times d}$, set

$$
\mathcal{D}^{\Sigma}:=\left\|\Sigma^{-1 / 2} \hat{\Sigma} \Sigma^{-1 / 2}-I_{p}\right\|_{o p}
$$

Theorem (Inequality for OLS Estimator)

For any set of observations $Z_{i}=\left(X_{i}, Y_{i}\right)$, any $\Sigma \in \mathbb{R}^{d \times d}$ and any $\beta \in \mathbb{R}^{d}$, we have

$$
\left\|\hat{\beta}-\beta-\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} \leq \frac{\mathcal{D}^{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}\right)_{+}}\left\|\frac{1}{n} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \beta\right)\right\|_{\Sigma} .
$$

- Inequality is a deterministic version of Bahadur representation.
- In some cases (e.g., subsampling/cross-validation) the flexibility of choosing arbitrary Σ, β comes in handy. Also note: $\mathcal{D}^{\Sigma} \approx 0$ is same as $\hat{\Sigma} \approx \Sigma$.
- Requires no model assumptions, no randomness assumptions, no assumptions on d / n, no independence/dependence assumptions.
- Implies optimal rates, finite sample tail bounds, Berry-Esseen bounds for $\hat{\beta}$.

Application 1: Leave-one-out Cross-Validation

Application 1: Leave-one-out Cross-Validation (LOOCV)

- The deterministic inequality can be readily used for simplifying LOOCV.
- For each $1 \leq j \leq n$, define

$$
\hat{\beta}_{-j}:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \sum_{i=1, i \neq j}^{n}\left(Y_{i}-X_{i}^{\top} \theta\right)^{2} \Leftrightarrow \sum_{i=1, i \neq j}^{n} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}_{-j}\right)=0 .
$$

- In this case, it is intuitively clear that $\hat{\beta}_{-j}$ is close to $\hat{\beta}$.
- Note that $\hat{\Sigma}_{-j} \approx \hat{\Sigma}$ for any j, where $\hat{\Sigma}_{-j}=(n-1)^{-1} \sum_{i=1, i \neq j}^{n} X_{i} X_{i}^{\top}$.

Corollary (Deterministic Approximation of LOOCV)

If $n \geq 2$, then simultaneously, for all $1 \leq j \leq n$, we have

$$
\left\|\hat{\beta}_{-j}-\hat{\beta}-\frac{\hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)}{n}\right\|_{\hat{\Sigma}} \leq \frac{2 \mathfrak{D} / n}{(1-2 \mathfrak{D} / n)_{+}}\left\|\frac{\hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right)}{n}\right\|_{\hat{\Sigma}},
$$

where $\mathfrak{D}:=1+\max _{1 \leq j \leq n}\left\|\hat{\Sigma}^{-1 / 2} X_{j}\right\| .\left(\right.$ Hence $\left.\hat{\beta}_{-j} \approx \hat{\beta}+n^{-1} \hat{\Sigma}^{-1} X_{i}\left(Y_{i}-X_{i}^{\top} \hat{\beta}\right).\right)$

Application 2: Transformations of Response

Application 2: Transformations of Response

- In modeling, it is sometimes of interest to transform the response to match the assumptions like Gaussianity or homoscedasticity.
- Finding a "good" transformation involves some data snooping. Once again the inequality can be used to get a result for final estimator.
- Suppose \mathcal{G} is a class of transformations under consideration and for each $g \in \mathcal{G}$, we have the OLS estimator

$$
\hat{\beta}_{g}:=\operatorname{argmin}_{\theta \in \mathbb{R}^{d}} \sum_{i=1}^{n}\left(g\left(Y_{i}\right)-X_{i}^{\top} \theta\right)^{2} .
$$

For any $g \in \mathcal{G}$, define $\operatorname{Inf}_{g}(\theta):=n^{-1} \sum_{i=1}^{n} \Sigma^{-1} X_{i}\left(g\left(Y_{i}\right)-X_{i}^{\top} \theta\right)$.

Corollary (Bahadur Representation with Transformed Response)

For any set of observations $Z_{i}=\left(X_{i}, Y_{i}\right)$, any Σ, any $g \in \mathcal{G}$ and any $\beta_{g} \in \mathbb{R}^{d}$,

$$
\left\|\hat{\beta}_{g}-\beta_{g}-\operatorname{Inf}_{g}\left(\beta_{g}\right)\right\|_{\Sigma} \leq \frac{\mathcal{D}^{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}\right)_{+}}\left\|\operatorname{Inf}_{g}\left(\beta_{g}\right)\right\|_{\Sigma}
$$

In particular this holds for any random $\hat{g} \in \mathcal{G}$ chosen based on the data.

Application 3: Variable Selection

Application 3: Variable Selection

- More often than not, the set of covariates in a reported model is not the same as the set of covariates the analyst started with.
- Finding a "good" set of covariates involves some data snooping.
- Suppose \mathcal{M} is a collection of models (set of covariates) and for each $M \in \mathcal{M}$, we have the OLS estimator

$$
\hat{\beta}_{M}:=\operatorname{argmin}_{\theta \in \mathbb{R}^{|M|}} \sum_{i=1}^{n}\left(Y_{i}-X_{i, M}^{\top} \theta\right)^{2}
$$

Set for any $M \in \mathcal{M}, \operatorname{Inf}_{M}(\theta):=n^{-1} \sum_{i=1}^{n} \Sigma_{M}^{-1} X_{i, M}\left(Y_{i}-X_{i, M}^{\top} \theta\right)$.

Corollary (Bahadur Representation with Variable Selection)

For any $M \in \mathcal{M}$, any Σ_{M}, and any $\beta_{M} \in \mathbb{R}^{|M|}$, we have

$$
\left\|\hat{\beta}_{M}-\beta_{M}-\operatorname{Inf}_{M}\left(\beta_{M}\right)\right\|_{\Sigma_{M}} \leq \frac{\mathcal{D}_{M}^{\Sigma}}{\left(1-\mathcal{D}_{M}^{\Sigma}\right)_{+}}\left\|\operatorname{Inf}_{M}\left(\beta_{M}\right)\right\|_{\Sigma_{M}}
$$

where $\mathcal{D}_{M}^{\Sigma}:=\left\|\Sigma_{M}^{-1 / 2} \hat{\Sigma}_{M} \Sigma_{M}^{-1 / 2}-l_{\mid M}\right\|_{o p}$. In particular M can be random chosen based on the data.

NBK Inequalities: Smooth M-estimation²

${ }^{2}$ K. (2018), Deterministic Inequalities for Smooth M-estimators. arXiv:1809.05172 Thanks to Mateo Wirth, Bikram Karmakar.

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$.

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$. If there exists $w^{0} \in \mathbb{R}^{q}$ and $L>0$ such that

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}} \ddot{g}(w)\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}}-I_{q}\right\|_{o p} \leq L\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)},
$$

whenever $\left\|w-w^{0}\right\|_{\dot{g}\left(w^{0}\right)} \leq(3 L)^{-1}$, (ratio-type continuity condition) and

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$. If there exists $w^{0} \in \mathbb{R}^{q}$ and $L>0$ such that

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}} \ddot{g}(w)\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}}-I_{q}\right\|_{o p} \leq L\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)},
$$

whenever $\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)} \leq(3 L)^{-1}$, (ratio-type continuity condition) and

$$
\left.\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)\right\|_{\ddot{g}\left(w^{0}\right)} \leq \frac{2}{9 L} \quad \text { ("Close" to zero gradient at } w^{0}\right) .
$$

Then

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$.
If there exists $w^{0} \in \mathbb{R}^{q}$ and $L>0$ such that

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}} \ddot{g}(w)\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}}-I_{q}\right\|_{o p} \leq L\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)},
$$

whenever $\left\|w-w^{0}\right\|_{\tilde{g}}\left(w^{0}\right) \leq(3 L)^{-1}$, (ratio-type Lipschitz condition) and

$$
\left.\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)\right\|_{\dot{g}\left(w^{0}\right)} \leq \frac{2}{9 L}, \quad \text { ("Close" to zero gradient at } w^{0}\right) .
$$

Then

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$.
If there exists $w^{0} \in \mathbb{R}^{a}$ and $L>0$ such that

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}} \ddot{g}(w)\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}}-I_{q}\right\|_{o p} \leq L\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)},
$$

whenever $\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)} \leq(3 L)^{-1}$, (ratio-type Lipschitz condition) and

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)\right\|_{\ddot{g}\left(w^{0}\right)} \leq \frac{2}{9 L}, \quad\left(\text { "Close" to zero gradient at } w^{0}\right) .
$$

Then \exists a unique $w^{\star} \in B\left(w^{0}, r ; \ddot{g}\left(w^{0}\right)\right) \ni \dot{g}\left(w^{\star}\right)=0$ and

$$
\|w^{\star}-\underbrace{\left[w^{0}-\left(\ddot{g}\left(w^{0}\right)\right)^{-1} \dot{g}\left(w^{0}\right)\right]}\|_{\ddot{g}\left(w^{0}\right)} \leq \frac{9 L}{4}\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)\right\|_{\ddot{g}\left(w^{0}\right)}^{2} .
$$ First Newton Iterate

Quadratic Convergence of Newton's Algorithm.

Semi-local Convergence: Newton-Kantorovich Theorem

Consider a function $g(\cdot)$. Define $B\left(w^{0}, \eta ; A\right):=\left\{w:\left\|w-w^{0}\right\|_{A} \leq \eta\right\}$.
If there exists $w^{0} \in \mathbb{R}^{a}$ and $L>0$ such that

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}} \ddot{g}(w)\left[\ddot{g}\left(w^{0}\right)\right]^{-\frac{1}{2}}-I_{q}\right\|_{o p} \leq L\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)}
$$

whenever $\left\|w-w^{0}\right\|_{\ddot{g}\left(w^{0}\right)} \leq(3 L)^{-1}$, (ratio-type Lipschitz condition) and

$$
\left\|\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)\right\|_{\ddot{g}\left(w^{0}\right)} \leq \frac{2}{9 L}, \quad\left(" C l o s e " \text { to zero gradient at } w^{0}\right) .
$$

Then \exists a unique $w^{\star} \in B\left(w^{0}, r ; \ddot{g}\left(w^{0}\right)\right) \ni \dot{g}\left(w^{\star}\right)=0$ and

$$
\|\underbrace{\left(w^{\star}-w^{0}\right)}_{\text {Estimation Err. }}+\underbrace{\left(\ddot{g}\left(w^{0}\right)\right)^{-1} \dot{g}\left(w^{0}\right)}_{\text {Influence function }}\|_{\ddot{g}\left(w^{0}\right)} \leq \frac{9 L}{4}\|\underbrace{\left[\ddot{g}\left(w^{0}\right)\right]^{-1} \dot{g}\left(w^{0}\right)}_{\text {Influence function }}\|_{\ddot{g}\left(w^{0}\right)}^{2} .
$$

Finite Sample bnd Bahadur Representation of M-estimator.

What have we gained?

- No randomness assumptions on the data; result is deterministic.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.
- No model assumptions. Allows study under misspecification.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.
- No model assumptions. Allows study under misspecification.
- No asymptotics; everything holds at any finite sample size.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.
- No model assumptions. Allows study under misspecification.
- No asymptotics; everything holds at any finite sample size.
- Bounds are in terms of \ddot{g} and \dot{g} that are averages if $g(\theta)=\sum_{i=1}^{n} \ell\left(Z_{i}, \theta\right)$. Averages studied for more than a century under various settings.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.
- No model assumptions. Allows study under misspecification.
- No asymptotics; everything holds at any finite sample size.
- Bounds are in terms of \ddot{g} and \dot{g} that are averages if $g(\theta)=\sum_{i=1}^{n} \ell\left(Z_{i}, \theta\right)$. Averages studied for more than a century under various settings.
- Disadvantage: Requires smoothness on the function.

What have we gained?

- No randomness assumptions on the data; result is deterministic.
- No independence assumptions on observations.
- No model assumptions. Allows study under misspecification.
- No asymptotics; everything holds at any finite sample size.
- Bounds are in terms of \ddot{g} and \dot{g} that are averages if $g(\theta)=\sum_{i=1}^{n} \ell\left(Z_{i}, \theta\right)$. Averages studied for more than a century under various settings.
- Disadvantage: Requires smoothness on the function.

Under whatever dependence,
LLN for $\ddot{g}\left(w^{0}\right)$ and CLT for $\dot{g}\left(w^{0}\right) \quad \Rightarrow \quad$ CLT for $w^{\star}-w^{0}$.

Application: Logistic/Poisson Regression

Application: Logistic/Poisson Regression

- For either $\psi(u)=\log (1+\exp (u))$, Logistic or $\psi(u)=\exp (u)$ Poisson, let

$$
\hat{\beta}:=\operatorname{argmin}_{\theta \in \mathbb{R}^{d}} L_{n}(\theta), \quad \text { where } \quad L_{n}(\theta):=\sum_{i=1}^{n}\left[\psi\left(X_{i}^{\top} \theta\right)-Y_{i} X_{i}^{\top} \theta\right],
$$

- Define for any $\theta \in \mathbb{R}^{d}$ and $\Sigma \in \mathbb{R}^{d \times d}, \mathcal{D}^{\Sigma}(\theta):=\left\|\Sigma^{-1 / 2} \ddot{L}_{n}(\theta) \Sigma^{-1 / 2}-I_{d}\right\|_{o p}$.

Theorem

For any $\beta \in \mathbb{R}^{d}$ and any $\Sigma \in \mathbb{R}^{d \times d}$, if

$$
\max _{1 \leq i \leq n}\left\|\Sigma^{-1 / 2} X_{i}\right\| \times\left\|\Sigma^{-1} \dot{L}_{n}(\beta)\right\|_{\Sigma} \leq 0.19\left(1-\mathcal{D}^{\Sigma}(\beta)\right)_{+}
$$

then

$$
\frac{\left\|\hat{\beta}_{n}-\beta+\Sigma^{-1} \dot{L}_{n}(\beta)\right\|_{\Sigma}}{\left\|\Sigma^{-1} \dot{L}_{n}(\beta)\right\|_{\Sigma}} \leq \frac{\mathcal{D}^{\Sigma}(\beta)}{\left(1-\mathcal{D}^{\Sigma}(\beta)\right)_{+}}+\frac{10 \max _{i}\left\|\Sigma^{-1 / 2} X_{i}\right\|\left\|\Sigma^{-1} \dot{L}_{n}(\beta)\right\|_{\Sigma}}{\left(1-\mathcal{D}^{\Sigma}(\beta)\right)_{+}^{2}}
$$

Proves "CLT" if $\operatorname{dim}\left(X_{i}\right)=o(\sqrt{n})$.

Summary and Conclusions

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.
- Following the result for logistic and Poisson regression, applications like cross-validation, transformations, variable selection as done for linear regression can be carried out easily.

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.
- Following the result for logistic and Poisson regression, applications like cross-validation, transformations, variable selection as done for linear regression can be carried out easily.
- The additional assumption above comes from non-linearity of the estimating function which also leads to an additional term in the remainder.

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.
- Following the result for logistic and Poisson regression, applications like cross-validation, transformations, variable selection as done for linear regression can be carried out easily.
- The additional assumption above comes from non-linearity of the estimating function which also leads to an additional term in the remainder.
- Newton-Kantarovich theorem was developed to study convergence of Newton iterates and it implies Bahadur representation.

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.
- Following the result for logistic and Poisson regression, applications like cross-validation, transformations, variable selection as done for linear regression can be carried out easily.
- The additional assumption above comes from non-linearity of the estimating function which also leads to an additional term in the remainder.
- Newton-Kantarovich theorem was developed to study convergence of Newton iterates and it implies Bahadur representation.
- This thinking leads to some new first order expansion results for penalized/regularized estimators in high-dimensions.

Some Comments

- Deterministic inequalities as above proving Bahadur representation are what we call NBK (Newton-Bahadur-Kantarovich) inequalities.
- Following the result for logistic and Poisson regression, applications like cross-validation, transformations, variable selection as done for linear regression can be carried out easily.
- The additional assumption above comes from non-linearity of the estimating function which also leads to an additional term in the remainder.
- Newton-Kantarovich theorem was developed to study convergence of Newton iterates and it implies Bahadur representation.
- This thinking leads to some new first order expansion results for penalized/regularized estimators in high-dimensions.
- NBK inequalities are also proved for Cox proportional hazards model, Non-linear least squares, Equality constrained M-estimators among others.

Some Comments Contd.

- In order to apply NBK inequalities to complete the study of an estimator in any setting, one needs to choose Σ, β and bound the remainder terms in the inequalities.
- For $\hat{\beta}$ defined as a minimizer of $L_{n}(\cdot)$, a canonical choice of Σ, β is given by

$$
\beta:=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}} \mathbb{E}\left[L_{n}(\theta)\right] \quad \text { and } \quad \Sigma:=\mathbb{E}\left[\ddot{L}_{n}(\beta)\right] .
$$

- For independent as well as a weakly dependent sub-Gaussian observations,

$$
\max \left\{\mathcal{D}^{\Sigma}(\beta),\left\|\Sigma^{-1} \dot{L}_{n}(\beta)\right\|_{\Sigma}\right\}=O_{p}(\sqrt{d / n})
$$

which implies optimal rates for Bahadur representation.

- In case of variable selection, we have

$$
\max _{|M| \leq k} \max \left\{\mathcal{D}_{M}^{\Sigma}\left(\beta_{M}\right),\left\|\Sigma_{M}^{-1} \dot{L}_{n}\left(\beta_{M}\right)\right\|_{\Sigma_{M}}\right\}=O_{p}(\sqrt{k \log (e d / k) / n}) .
$$

This solves the post-selection inference problem with increasing dimension and much more.

Summary and Conclusions

- We have introduced the idea of studying estimators in a deterministic way.
- NBK inequalities solve almost all problems about an estimator in one shot:
- They imply Berry-Esseen type bounds and hence (finite sample) normal approximation results can follow.
- They allow for understanding the effects of increasing dependence between observations, increasing dimension.
- Importantly in the context of reproducibility, NBK inequalities allow study of estimators obtained after data snooping.
- In particular, it solves the problem of post-selection inference in a unified way and in the most general setting available till date.
- Further in the context of cross-validation/subsampling, NBK inequalities show how computation can be reduced at the expense of very small approximation error.
- Application of a (proximal) variant of Newton's method for penalized or constrained estimators leads to first order expansion results.

Summary and Conclusions

- We have introduced the idea of studying estimators in a deterministic way.
- NBK inequalities solve almost all problems about an estimator in one shot:
- They imply Berry-Esseen type bounds and hence (finite sample) normal approximation results can follow.
- They allow for understanding the effects of increasing dependence between observations, increasing dimension.
- Importantly in the context of reproducibility, NBK inequalities allow study of estimators obtained after data snooping.
- In particular, it solves the problem of post-selection inference in a unified way and in the most general setting available till date.
- Further in the context of cross-validation/subsampling, NBK inequalities show how computation can be reduced at the expense of very small approximation error.
- Application of a (proximal) variant of Newton's method for penalized or constrained estimators leads to first order expansion results.

Thanks!

Application: Post-selection Inference

- Uniform linear representation result allows us to claim

$$
\max _{M \in \mathcal{M}}\left\|\hat{\beta}_{M}-\beta_{M}\right\|_{\infty} \approx \max _{M \in \mathcal{M}}\left\|\frac{1}{n} \sum_{i=1}^{n} \psi_{M}\left(X_{i}, Y_{i}\right)\right\|_{\infty}
$$

for some vector functions ψ_{M}.

- High-dimensional CLT implies

$$
\max _{M \in \mathcal{M}}\left\|\frac{1}{n} \sum_{i=1}^{n} \psi_{M}\left(X_{i}, Y_{i}\right)\right\|_{\infty} \underset{\sim}{\mathcal{L}} \max _{M \in \mathcal{M}}\left\|G_{M}\right\|_{\infty}
$$

for some Gaussian process $\left(G_{M}\right)_{M \in \mathcal{M}}$.

- Corresponding multiplier bootstrap implies

$$
\begin{aligned}
& \max _{M \in \mathcal{M}}\left\|\hat{\beta}_{M}-\beta_{M}\right\|_{\infty} \stackrel{\mathcal{L}}{\approx} \max _{M \in \mathcal{M}}\left\|\frac{1}{n} \sum_{i=1}^{n} g_{i} \hat{\psi}_{M}\left(X_{i}, Y_{i}\right)\right\|_{\infty} \quad \text { Cond. on }\left(X_{i}, Y_{i}\right), \\
& \text { for } g_{1}, \ldots, g_{n} \sim N(0,1) \text { (iid). }
\end{aligned}
$$

PoSI Contd.

- To finish inference, need to compute

$$
\max _{M \in \mathcal{M}}\left\|\frac{1}{n} \sum_{i=1}^{n} g_{i} \hat{\psi}_{M}\left(X_{i}, Y_{i}\right)\right\|_{\infty}
$$

for a given set of models \mathcal{M}.

- Number the models in \mathcal{M} as $1,2, \ldots, N$. We have

$$
x_{j}:=\left\|\frac{1}{n} \sum_{i=1}^{n} g_{i} \hat{\psi}_{j}\left(X_{i}, Y_{i}\right)\right\|_{\infty}
$$

- Need to compute (at least approximately)

$$
\|x\|_{\infty}=\max _{1 \leq j \leq N}\left|x_{j}\right|,
$$

for the vector $x=\left(x_{1}, \ldots, x_{N}\right)$.

Maximum Computation ${ }^{3}$

- Observe that

$$
\left(\frac{1}{N} \sum_{j=1}^{N} x_{j}^{q}\right)^{1 / q} \leq\|x\|_{\infty} \leq N^{1 / q}\left(\frac{1}{N} \sum_{j=1}^{N} x_{j}^{q}\right)^{1 / q}
$$

- If W is a random variable drawn uniformly from $\left\{x_{1}, \ldots, x_{N}\right\}$, then

$$
\left(\mathbb{E}\left[W^{q}\right]\right)^{1 / q} \leq\|x\|_{\infty} \leq N^{1 / q}\left(\mathbb{E}\left[W^{q}\right]\right)^{1 / q} .
$$

- Hence (multiplicatively) approximating the maximum is same as approximating the expectation of a random variable given access to independent draws.

How many draws required to find $\mathbb{E}\left[W^{q}\right]$ upto a factor of $(1 \pm \varepsilon) ?$

[^0]
Summary

- We have shown how the analysis of Newton's method can be used to derive finite sample results for M -estimators.
- This idea allow "easier" study of constrained/penalized M-estimators.
- Connections to AMP??
- These results imply post-selection inference for various estimation procedures including GLMs, Cox Model, NonLinear Least Squares, Equality Constrained MLE.
- Realizing PoSI in practice requires solving a maximum problem.

$$
\text { PoSI } \rightarrow \text { Maximum Estimation } \rightarrow \text { Mean Estimation. }
$$

- achievable sample complexity bounds for maximum??

Maximum Computation (Contd.)

- An estimator \hat{E}_{W} of $\mathbb{E}[W]>0$ is an (ε, δ) approximate if

$$
\mathbb{P}\left(\left|\frac{\hat{E}_{W}}{\mathbb{E}[W]}-1\right| \leq \varepsilon\right) \geq 1-\delta .
$$

- If a random variable $W \geq 0$ is known to satisfy

$$
\operatorname{Var}(W) \leq L^{2}(\mathbb{E}[W])^{2}
$$

then

$$
n_{\varepsilon, \delta} \asymp \frac{2 L^{2}}{\varepsilon^{2}} \log \left(\frac{1}{\sqrt{2 \pi} \delta}\right) .
$$

- If a random variable $W \in[0, B]$ for some known B, then

$$
n_{\varepsilon, \delta} \asymp C \max \left\{\frac{\operatorname{Var}(W)}{\varepsilon^{2}(\mathbb{E}[W])^{2}}, \frac{B}{\varepsilon \mathbb{E}[W]}\right\} \log \left(\frac{1}{\delta}\right),
$$

for some universal constant $C>0$.

[^0]: ${ }^{3}$ Joint work (in progress) with Junhui Cai

