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Motivation and Examples



Inference: confidence intervals

⋆ Statistical inference is the cornerstone of statistics and is a necessary

ingredient in any rigorous scientific study.

⋆ Suppose we have a (real-valued) functional θ(P),P ∈ P, e.g., the mean

of P or a coefficient in a regression model.

⋆ Traditional inference methods such as Wald or resampling (e.g.

bootstrap or subsampling) proceed as follows.

⋆ Assuming the existence of an estimator θ̂n based on n observations such

that

rn(θ̂n − θ(P))
d→ L,

a confidence interval can be constructed as

ĈIn,α :=

[
θ̂n −

q̂1−α/2

r̂n
, θ̂n +

q̂α/2
r̂n

]
,

where q̂γ represents an estimate of the γ-th quantile of the random

variable L, and r̂n is an estimate of rn, if unknown.
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Limitations of Traditional Inference

⋆ Estimation of quantiles or even the asymptotic variance can be difficult.

⋆ The rate of convergence of the estimator can depend on the underlying

data generating process.

⋆ The limiting distribution may be intractable.

⋆ Finally, traditional methods can be computationally expensive.

The robust statistics literature includes several examples that fit one or

more of the above limitations. For example, sample median or quantile

regression is robust but

– its asymptotic variance involves (conditional) densities hard to estimate;

– rate of convergence can be unknown if density becomes zero; and

– limiting distribution can be intractable.

Finally, except for simpler models, robust estimators are derived from

non-convex optimization and can be computationally intensive for

resampling purposes.
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Inference I: HulCa

aJoint work with Larry Wasserman and Siva Balakrishnan



Inference I: HulC (Hull-based Confidence Regions)

Figure 1: Illustration of Nested Structure of Limiting Distributions
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Inference I: HulC

⋆ Suppose that we have two independent estimators θ̂1 and θ̂2 for the

parameter/functional θ0 = θ(P) satisfying

P(θ̂j ≥ θ(P)) = P(θ̂j ≤ θ(P)) = 1/2 for j = 1, 2.

⋆ Define

θmin = min{θ̂1, θ̂2} and θmax = max{θ̂1, θ̂2}.

Hence, [θmin, θmax] is a valid 50% confidence interval.
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The HulC Algorithm

⋆ Suppose we have n IID observations Z1, . . . ,Zn.

⋆ Randomly split into B = log2(2/α) batches of approximately equal size

and compute the estimator on each batch: θ̂(j), 1 ≤ j ≤ B.

⋆ Return the confidence set

ĈIn,α :=

[
min

1≤j≤B
θ̂(j), max

1≤j≤B
θ̂(j)

]
.

– If the median bias

∆ = max
1≤j≤B

(
1

2
−min

{
P(θ̂(j) ≥ θ0), P(θ̂(j) ≤ θ0)

})
+

→ 0,

then

lim sup
n→∞

P(θ0 /∈ ĈIn,α) ≤ α.

– Note that the computational cost is always smaller than the cost of

computing the estimator on n observations. (B ≈ 6 for α = 0.05.)

– No need for knowledge of the rate of convergence and the limiting

distribution. 7



Applications

⋆ Every asymptotically normal estimator satisfies ∆ → 0.

⋆ Many non-normal estimators also satisfy ∆ → 0:

– Quantile regression

– Least median of squares

– Shorth estimator

– Estimators of mode

– Robust non-parametric monotone regression

– MM-estimators.

⋆ The great advantage of this method is that one does not need to

estimate the variance/rate to construct the confidence interval.

⋆ Some limitations (not just of HulC) include the fact that convergence in

distribution happens at a slow rate for reliable performance in practice.

⋆ The next two methods provide inference without requiring convergence

in distribution of the estimator.
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Inference II: M-estimation

problemsa

aJoint work with Kenta Takatsu (arXiv:2501.07772)



M-estimation Inference

⋆ Most functionals encountered in practice can be written as

θ(P) := argmin
θ∈Θ

EP [m(θ,Z )],

for some loss function m(θ,Z ). OLS, Quantile regression, Manski’s

model, MLE are some examples.

⋆ Setting

M(θ) := EP [m(θ,Z )],

we know that

θ(P) ⊆
{
θ ∈ Θ : M(θ) ≤ M(θ̂)

}
,

for any estimator θ̂ ∈ Θ.

⋆ Of course, the right hand set is not computable based on the data. But

we can construct two sets based on this intuition and prove their

validity.
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M-estimation Inference

⋆ Consider

ĈI
†
n :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤ 0

}
,

ĈIn,α :=

{
θ ∈ Θ : M̂n(θ)− M̂n(θ̂1) ≤

zα/2σ̂(θ, θ̂1)

n1/2

}
,

(1)

where M̂n(θ) = n−1
∑n

i=1 m(θ,Zi ) and θ̂1 is obtained from an

independent sample, and σ̂(θ, θ̂1) is the sample standard deviation of

m(θ,Zi )−m(θ̂1,Zi ), 1 ≤ i ≤ n.

⋆ Clearly,

ĈI
†
n ⊆ ĈIn,α for any α ∈ (0, 1), n ≥ 1.

⋆ Note that the definition of the confidence sets have no restrictions on Θ

or θ̂1 except for θ̂1 ∈ Θ.

⋆ This idea exists in the operations research literature (Vogel (2008, J. of

Opt.)) where θ̂1 and M̂n(·) are computed on the same data.
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Validity

⋆ For any θ̂1, we have

P(θ(P) /∈ ĈIn,α) ≤ P(θ(P) /∈ ĈI
†
n) ≤ E

[
σ2
P(θ̂1)

σ2
P(θ̂1) + nC2

P(θ̂1)

]
,

where

σ2
P(θ

′) := Var(m(θ(P),Z )−m(θ′,Z )),

CP(θ
′) := E[m(θ,Z )]−min

θ∈Θ
E[m(θ,Z )].

⋆ If θ̂1 is consistent for θ(P), then under mild regularity conditions,

P(θ(P) /∈ ĈIn,α) ≥ 1− α− o(1) as n → ∞.

⋆ Neither guarantee depends on Θ or the dimension/definition of θ̂1.

⋆ With a slight modification, we can obtain finite sample validity for these

confidence intervals if the loss is bounded (with a known bound).

⋆ Interestingly, we can show that the confidence region ĈIn,α shrinks to a

singleton at the optimal rate. It adapts!! 11



Simple, non-trivial example

⋆ Consider

θ(P) := argmin E[ℓ(Y − X⊤θ)] + h(θ),

where h(·) is some non-stochastic penalty, such as

h(θ) = λ∥θ∥ρρ, ρ ≥ 0 or

{
0, if Aθ ≤ b,

+∞, if Aθ ≰ b

⋆ This would be a penalized/constrained reweighted least squares

estimator and can be efficiently computed.

⋆ However, the limiting distribution is incomprehensible because it

depends on the derivative of penalty at θ(P) and/or inequalities that

are active at θ(P), i.e., the coordinates j such that a⊤j θ(P) = bj .

⋆ To my knowledge, no uniformly valid inference procedure exists except

ĈIn,α. Also, note that our procedure does not require a well-specified

linear model.
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Inference III: Z-estimation

problemsa

aJoint work with Woonyoung Chang (arXiv:2407.12278)



Z-estimation Problems

⋆ Z -estimation problems refer to functionals defined as solutions to

equations:

EP [Ψ(θ(P),Z )] = 0,

for some estimating equation Ψ : Θ⊗Z → Rd (assuming Θ ⊆ Rd).

⋆ In general, we can consider θ(P) defined by a set of moment equalities

and inequalities. Such weakly/partially identified parameters are

common in econometrics.

⋆ Clearly, for any vector a ∈ Rd , we have E[a⊤Ψ(θ(P),Z )] = 0, which

implies

ĈIn,α =

θ ∈ Θ :
|
∑n

i=1 a
⊤Ψ(θ,Zi )|√∑n

i=1(a
⊤Ψ(θ,Zi ))2

≤ zα/2

 ,

is an asymptotically valid confidence set. Of course, this is inefficient in

d − 1 dimensions (i.e., its Lebesgue measure is infinite), in general.
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Z-estimation Problems

⋆ Instead, split the data into two parts and compute estimator θ̂ from first

half. Then compute this set with a = θ̂ − θ, which makes it full

dimensional:

ĈIn,α =

θ ∈ Θ :
|
∑n

i=1(θ̂ − θ)⊤Ψ(θ,Zi )|√∑n
i=1((θ̂ − θ)⊤Ψ(θ,Zi ))2

≤ zα/2

 .

⋆ If

sup
a∈Rd

E[|a⊤Ψ(θ(P),Z )|3]
(E[|a⊤Ψ(θ(P),Z )|2)3/2

≤ L,

then

lim sup
n→∞

P(θ(P) /∈ ĈIn,α) ≤ α.
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Conclusions

⋆ Estimation has received a lot of focus in both regular and irregular

settings.

⋆ Traditionally, the construction of tests or confidence sets is mostly

based on some estimation procedure and its limiting distribution.

⋆ Robust estimation does not readily imply robust inference.

⋆ We have discussed three new inference procedures, two of which

completely avoid the study of intricate limiting behavior of the pilot

estimator.

⋆ The validity of all three methods is relatively easy, especially compared

to that of resampling methods.

⋆ Although the methods are not developed with optimality as a goal, all

of them yield optimal adaptive confidence sets.

Thank You!
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