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M-estimation in Linear Regression

M-estimation as was brought into limelight by Huber (1964) has
been extensively studied in location (and location-scale) model.

Similarly, M-estimation of multiple linear regression model has been
extensively studied. For example, LTS, LMS, MM-estimators,
S-estimators etc. Linear regression model is given by

yi = x>i β0 + εi , ε1, ε2, . . . , εn
iid∼ N(0, 1).

Most of these estimators generalize the normal likelihood estimating
equation (also least squares).

MLE: minimize over β, 1
n

∑n
i=1(yi − x>i β)2.

M-estimator: minimize over β, 1
n

∑n
i=1 φ(yi − x>i β) for some

suitably chosen function φ.
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Likelihood in NPs

Consider the non-parametric regression model:

yi = m0(xi ) + εi , ε1, ε2, . . . , εn
iid∼ N(0, 1).

In order to avoid over-fitting, there are two proposals available in
literature.
P1: minimize over f ∈ C 2,

1

n

n∑
i=1

(yi − f (xi ))2 + λn

∫
[0,1]d

f ′′(x)
2
dx .

P2: minimize over θ ∈ R for each x ∈ [0, 1]d ,

1

n

n∑
i=1

Wi (x)(yi − θ)2,

to get m̂(x). Here Wi (x) denotes the weights. For example

Wi (x) = 1
hn
K
(

x−Xi

hn

)
for a kernel K .
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M-estimation in NPs

Analogs of these two procedures were studied in literature in the
context of M-estimation to get robust estimates in non-parametric
regression.

M-estimation similar to P1 was studied by Huber (1979), Utreras
(1981), Cox (1983), Chaudhuri (1995) (from the likelihood point of
view).

M-estimation similar to P2 was studied by Cleveland (1979); Härdle
(1984); Boente and Fraiman (1989).

Extensions of these methods with simultaneous scale estimation are
also available. See for example Härdle and Tsybakov (1988).

Most of these works study non-parametric estimation without
considering a model for errors (similar to M-estimation of location).

Arun Kumar Kuchibhotla, Prof. Ayanendranath Basu

Robust Curve Estimation



Review of NP Estimation Intro to DPD NP Estimation using DPD Remarks Properties Density Estimation

Density Power Divergences

Density power divergences as was proposed by Basu et al. (1998)
offers a smooth extension of maximum likelihood method of
estimation.

ρα(g , f ) =
1

α

∫
g1+α(x)dx− 1 + α

α

∫
g(x)f α(x)dx +

∫
f 1+α(x)dx .

Suppose we now have X1,X2, . . . ,Xn
iid∼ g and we want to fit a

density from the parametric model F := {fθ : θ ∈ Θ}.

We can minimize ρα(g , fθ) over θ in order to get a “reasonable”
estimate.
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Introduction (Contd.)

In order to get the minimizer, we need to estimate ρα(g , fθ). Note
that we do not need the first term and the third term need not be
estimated. For the second term, realizing that it is an expectation
we can estimate it by

1

n

n∑
i=1

f αθ (Xi ).

Minimum DPD estimator corresponding to the parameter α(> 0) is
defined by

θ̂α := argmin
θ

∫
f 1+αθ (x)dx − 1 + α

α

1

n

n∑
i=1

f αθ (Xi ).

For α = 0, it was defined by taking limit as α→ 0 of ρα(g , fθ). θ̂0
corresponds to the maximum likelihood estimator.
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Properties

The main advantage of DPD estimator over general robust
M-estimator is that the properties of the estimator like robustness
and efficiency can be tuned by changing the value of (scalar) tuning
parameter α.

As α increases from 0, the estimator becomes more robust and less
efficient.

The case α = 1 corresponds to L2 estimator which has relative
efficiency of about 50% in normal model. Hence, usually we consider
0 < α < 1.

DPD estimator has been extensively studied in case of estimation in
regular parametric models including the case of censored data and
non-homogeneous observations (regression). See, for example,
Ghosh and Basu (2014).
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DPD Estimation

Considering the model yi = m0(xi ) + εi with ε1, ε2, . . . , εn
iid∼ N(0, 1),

the corresponding DPD estimators of m0 would be given as follows.

DPD-P1: minimize over f ∈ C k ,

− 1

nα

n∑
i=1

exp
(
−α

2
[yi − f (xi )]2

)
+

1

α
+ λn

∫
[0,1]d

f (k)(x)
2
dx .

DPD-P2: minimize over θ ∈ R for each x ∈ [0, 1]d ,

1

n

n∑
i=1

Wi (x)

[
1

α
− 1

α
exp

(
−α

2
[yi − θ]2

)]
,

to get m̂α(x).
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Remarks

Note that if α→ 0, then both the objective functions coincide with
those of P1 and P2.

Objective functions in DPD-P1 and DPD-P2 can be accordingly
modified with respect to the error distribution.

That is, we can write∫
f α+1
m (y |xi )dy −

1 + α

α
f αm (yi |xi ),

in place of [yi −m(xi )]2 in P1 and P2. This would allow us to study
the efficiency properties of the non-parametric estimator m̂α and
tune α accordingly.
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Properties of m̂α from DPD-P1

The minimizer of the objective function in DPD-P1 is a natural
spline of degree 2k − 1. Hence an iterative algorithm similar to that
given in Reinsch (1967) can be used to calculate the estimator.

This algorithm is observed to be numerically more stable than the
iteratively reweighed least squares algorithm.

The general results of Cox (1983) proves that the estimator m̂α

leads to optimal rate of convergence of ‖m̂α −m0‖2 for every α.
Also see Oh, Nychka and Lee (2007) for more details.

Simulations under different contaminations are as follows.
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Contamination: 0% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 1% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 5% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 10% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 25% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Properties of m̂α from DPD-P2

The objective function here naturally leads to an iterative algorithm.
For α = 0, the estimator coincides with the non-parametric
regression function estimator based on the weights Wi (x), i.e,

n∑
i=1

Wi (x)Yi/

n∑
i=1

Wi (x).

Pointwise properties of these estimators were extensively studied in
literature. Their general results prove that under certain regularity
conditions, related to the weight function, there exists cn (depending
on weight function) such that for any set of points t1, t2, . . . , tk ,

cn(m̂α(t1:k)−m0(t1:k))
L→ N(0,Vα(t1:k)). See Boente and Fraiman

(1989) for more details.
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Contamination: 0% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 1% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu

Robust Curve Estimation



Review of NP Estimation Intro to DPD NP Estimation using DPD Remarks Properties Density Estimation

Contamination: 5% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 10% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu
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Contamination: 25% and Sample Size: 100

Figure: Regression Fit using DPDArun Kumar Kuchibhotla, Prof. Ayanendranath Basu

Robust Curve Estimation



Review of NP Estimation Intro to DPD NP Estimation using DPD Remarks Properties Density Estimation

Conclusions

Similar results can be obtained by including variance function (both
homoscedastic and heteroscedastic). In case of variance function
estimation, using the joint normality result, we can get confidence
bands for m̂α.

Choice of λn are critical in getting the asymptotic results. Choice of
α is critical in getting a good estimate (robust or efficient depending
on the data).

Choice of λn can be done by cross-validation. But asymptotic
analysis related to data-driven choices of α and λn are yet to be
done.

An R-Package for these two methods is currently under preparation.
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Density Estimation based on DPD

Density estimation using DPD can be done in three ways.

one of these is similar to the penalized likelihood estimation of
density. This proposal requires minimization of∫

f 1+α(x)dx − 1

n

n∑
i=1

f α(Xi ) + λ

∫
f ′′(x)

2
dx .

over f ∈ C 2.

Other proposals use the regression function estimate derived using
DPD-P1 and DPD-P2. These use the root-unroot method proposed
by Brown et al. (2010) showing equivalence of density estimation
problem and regression function estimation problem.

This method can de described as follows.
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Root – Unroot method

Binning: Divide {Xi} into T equal length intervals between 0 and 1.
Let Q1,Q2, . . . ,QT be the number of observations in each of the
intervals.

Root Transform: Let Yi =
√

T
n

√
Qi + 1

4 , i = 1, . . . ,T , and treat

Y = (Y1,Y2, . . . ,YT ) as the new equispaced sample for a
non-parametric regression problem.

Regression Set up: Let h(x) =
√

f (x) and qj be the mid-point of
jth interval. Then

Yj ≈ h(qj) + σεj ,

where εj ∼ N(0, 1) and σ =
√

T
4n .
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Root – Unroot method

Non-parametric Regression: Apply any non-parametric regression
procedure to (qj ,Yj) to obtain an estimate ĥ of

√
f .

Unroot: The density function f is estimated by f̂ = ĥ2 .

Normalization: The estimator f̂ given in Step 4 may not integrate to
1. Set

f̃ =
f̂∫ 1

0
f̂ (t)dt

,

and use f̃ as the final estimator.
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Thank You!
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