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The Problem and Disparities

Problem: To estimate the “best” fitting parameter θg in the model
family {fθ : θ ∈ Θ} using i.i.d observations X1,X2, . . . ,Xn from a
continuous density g .

“best” is in the sense that θg := argminθ∈Θ ρ(g , fθ) for some distance ρ.
Disparity is a distance of the form∫

C

(
g

fθ
− 1

)
fθdx

for some convex function C . We will denote this form of ρ by ρC .
Example of Disparity: Hellinger Distance

∫
(
√
g −
√
fθ)2dx ;

C (t) = (
√
t + 1− 1)2.
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Minimum Disparity Estimation

Natural Estimator: θ̂n := argminθ∈Θ ρC (ĝn, fθ), for some non-parametric
density estimator ĝn, usually the kernel density estimator.

Under appropriate differentiable conditions on C , θ̂n solves the
equation ∫

A

(
ĝn
fθ
− 1

)
∇fθdx = 0,

with A(t) = C ′(t)(t + 1)− C (t).

Notational convenience: Define δ + 1 = g/fθ and δn + 1 = ĝn/fθ.
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The Difficulty

Notice that the objective function and so the estimating function
both involve integrals to be computed at each iteration for finding
the estimator numerically.

It can be numerically challenging to deal with integrals on infinite
support and/or with multivariate integrals.

Cheng & Vidyashankar (2006) in this respect propose the use of the
MCMC integration technique. This suggestion brings in the new
problem of “how many samples should be chosen?”

Can we use the samples already at hand in simplifying matters?
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New Idea

YES! Notice that

ρC (g , fθ) =

∫
C (δ)fθdx =

∫
C (δ) + δ

1 + δ
gdx .

Since the observations are from g , a natural estimator of ρC is given
by

1

n

n∑
i=1

C (δn(Xi )) + δn(Xi )

1 + δn(Xi )

.

Using this as the objective function, we get the estimating equation
as

1

n

n∑
i=1

A(δ(Xi )) + 1

δ(Xi ) + 1
uθ(Xi ) = 0.

This we call minimum distance weighted likelihood estimating
equation.
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Literature Review

Joe (1989) gave expression for bias and variance of

1

n

n∑
i=1

J(f̂n(Xi ))

which was proposed as an estimator for
∫
J(f )fdx .

Hall (1987) (1993) proved asymptotic normality in the special case
J(f ) = ln f .

Sricharan et al. (2012) (2012) gave different estimates of non-linear
density functionals using k-NN density estimate and proved their
asymptotic normality.
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Asymptotic Normality

Using techniques from empirical processes, by showing that the class{
A

(
h

fθ
− 1

)
fθ
h
uθ : sup

x
|h(x)− g(x)| < δn

}
satisfies Glivenko-Cantelli condition as n→∞ for some δn ↓ 0, we

prove that θ̂n
P→ θg .

Here we use that supx |ĝn(x)− g(x)| P→ 0 as n→∞. The above
result does not require any boundedness conditions related to A. It
only requires continuity of A and finiteness of some integral.

Using results of Van der Vaart & Wellner (2000), we prove that for
g = fθ0 for some θ0 ∈ Θ,

√
n(θ̂n − θ0)→ N(0, I−1(θ0)).
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Numerical Study

We consider the model (1− ε)N(0, 1) + εN(0, 25) with different choices
of ε and sample size 100 replicated 100 times and calculated MSE of the
mean estimator we get with Hellinger distance (HD), symmetric
chi-squared (SCS) disparity and negative exponential disparity (NED).

Table: MSE of Weighted Disparity Estimator

Error(ε) HD SCS NED

0% 0.009338745 0.01471686 0.01801712
5% 0.012974419 0.01668110 0.01652158

10% 0.014531107 0.01481695 0.01427600
20% 0.016173109 0.01595819 0.01587566
30% 0.017963730 0.01858150 0.01710205
40% 0.041553957 0.03473304 0.03020073
50% 0.079105797 0.04595299 0.04897471
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Comparison with ?MARK)

Markatou et al. (1998) proposed robust estimation by weighted
likelihood estimating function. They mention as a special case a set
of weights which can correspond to disparity estimating equations.

The major difference with our work is that our estimating function
has an objective function. But their estimating function cannot be
written as the derivative of an objective function.

Using our approach we can also estimate the objective function as
the mean over the random sample at hand. So, our approach allows
for non-differentiable continuous C .
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Robustness Properties

As was mentioned in Markatou et al. (1998), the estimator we get
using our method are robust to outliers. Finite sample breakdown
properties are yet to be done.
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