A Minimum Distance Weighted Likelihood Method of Estimation

K.Arun Kumar

Indian Statistical Institute

August 2, 2014

- ∢ ≣ →

The Problem and Disparities

Problem: To estimate the "best" fitting parameter θ_g in the model family $\{f_{\theta} : \theta \in \Theta\}$ using i.i.d observations X_1, X_2, \ldots, X_n from a continuous density g.

"best" is in the sense that $\theta_g := \operatorname{argmin}_{\theta \in \Theta} \rho(g, f_{\theta})$ for some distance ρ . Disparity is a distance of the form

$$\int C\left(\frac{g}{f_{\theta}}-1\right)f_{\theta}dx$$

for some convex function *C*. We will denote this form of ρ by ρ_C . **Example of Disparity:** Hellinger Distance $\int (\sqrt{g} - \sqrt{f_{\theta}})^2 dx$; $C(t) = (\sqrt{t+1}-1)^2$.

•

Minimum Disparity Estimation

Natural Estimator: $\hat{\theta}_n := \operatorname{argmin}_{\theta \in \Theta} \rho_C(\hat{g}_n, f_\theta)$, for some non-parametric density estimator \hat{g}_n , usually the kernel density estimator.

• Under appropriate differentiable conditions on C, $\hat{\theta}_n$ solves the equation

$$\int A\left(\frac{\hat{g}_n}{f_\theta}-1\right)\nabla f_\theta dx=0,$$

with A(t) = C'(t)(t+1) - C(t).

• Notational convenience: Define $\delta + 1 = g/f_{\theta}$ and $\delta_n + 1 = \hat{g}_n/f_{\theta}$.

- Notice that the objective function and so the estimating function both involve integrals to be computed at each iteration for finding the estimator numerically.
- It can be numerically challenging to deal with integrals on infinite support and/or with multivariate integrals.
- Cheng & Vidyashankar (2006) in this respect propose the use of the MCMC integration technique. This suggestion brings in the new problem of "how many samples should be chosen?"
- Can we use the samples already at hand in simplifying matters?

References

New Idea

.

• YES! Notice that

$$\rho_{C}(g, f_{\theta}) = \int C(\delta) f_{\theta} dx = \int \frac{C(\delta) + \delta}{1 + \delta} g dx.$$

• Since the observations are from g, a natural estimator of $\rho_{\rm C}$ is given by

$$\frac{1}{n}\sum_{i=1}^{n}\frac{C(\delta_n(X_i))+\delta_n(X_i)}{1+\delta_n(X_i)}$$

• Using this as the objective function, we get the estimating equation as

$$\frac{1}{n}\sum_{i=1}^{n}\frac{A(\delta(X_i))+1}{\delta(X_i)+1}u_{\theta}(X_i)=0.$$

This we call minimum distance weighted likelihood estimating equation.

• Joe (1989) gave expression for bias and variance of

$$\frac{1}{n}\sum_{i=1}^n J(\hat{f}_n(X_i))$$

which was proposed as an estimator for $\int J(f) f dx$.

- Hall (1987) (1993) proved asymptotic normality in the special case $J(f) = \ln f$.
- Sricharan et al. (2012) (2012) gave different estimates of non-linear density functionals using *k*-NN density estimate and proved their asymptotic normality.

Asymptotic Normality

• Using techniques from empirical processes, by showing that the class

$$\left\{A\left(\frac{h}{f_\theta}-1\right)\frac{f_\theta}{h}u_\theta:\sup_x|h(x)-g(x)|<\delta_n\right\}$$

satisfies Glivenko-Cantelli condition as $n \to \infty$ for some $\delta_n \downarrow 0$, we prove that $\hat{\theta}_n \xrightarrow{P} \theta_g$.

- Here we use that sup_x |ĝ_n(x) g(x)| → 0 as n→∞. The above result does not require any boundedness conditions related to A. It only requires continuity of A and finiteness of some integral.
- Using results of Van der Vaart & Wellner (2000), we prove that for $g = f_{\theta_0}$ for some $\theta_0 \in \Theta$, $\sqrt{n}(\hat{\theta}_n \theta_0) \rightarrow N(0, I^{-1}(\theta_0))$.

Numerical Study

We consider the model $(1 - \varepsilon)N(0, 1) + \varepsilon N(0, 25)$ with different choices of ε and sample size 100 replicated 100 times and calculated MSE of the mean estimator we get with Hellinger distance (HD), symmetric chi-squared (SCS) disparity and negative exponential disparity (NED).

$Error(\varepsilon)$	HD	SCS	NED
0%	0.009338745	0.01471686	0.01801712
5%	0.012974419	0.01668110	0.01652158
10%	0.014531107	0.01481695	0.01427600
20%	0.016173109	0.01595819	0.01587566
30%	0.017963730	0.01858150	0.01710205
40%	0.041553957	0.03473304	0.03020073
50%	0.079105797	0.04595299	0.04897471

Table: MSE of Weighted Disparity Estimator

Comparison with **?**MARK)

- Markatou et al. (1998) proposed robust estimation by weighted likelihood estimating function. They mention as a special case a set of weights which can correspond to disparity estimating equations.
- The major difference with our work is that our estimating function has an objective function. But their estimating function cannot be written as the derivative of an objective function.
- Using our approach we can also estimate the objective function as the mean over the random sample at hand. So, our approach allows for non-differentiable continuous *C*.

Robustness Properties

• As was mentioned in Markatou et al. (1998), the estimator we get using our method are robust to outliers. Finite sample breakdown properties are yet to be done.

э

- Hall, P. (1987), Estimation of integrated square density derivatives, *SPL*, 6(2), 109-115.
- Joe, H. (1989), Estimation of Entropy and Other Functionals of Multivariate Density, *AISM*, 41(4), 683-697.
- Markatou, M., Basu, A. and Lindsay, B. G. (1998). Weighted likelihood equations with bootstrap root search. *JASA*, 93, 740–750.
- Sricharan, K., Raich, R., and Hero, A.O. (2012), Estimation of non-linear functionals of densities with confidence, *IEEE Trans. Infor. Theory*, 58(7), 4135-4159.
- Van der Vaart, A. W. and Wellner, J. A. (2000), Preservation theorems for glivenko- cantelli and uniform glivenko-cantelli classes. In Evarist Gine, David M. Mason, and Jon A. Wellner, editors, *High Dimensional Probability II*, volume 47 of *Progress in Probability*, pages 115–133.
- Cheng, A. and Vidyashankar, A. N., Minimum Hellinger distance estimation for randomized play the winner design. *Journal of Statistical Planning and Inference*, 136 (6), 1875–1910.

(E)