Anytime Conformal Prediction

Arun Kumar Kuchibhotla 30 June, 2022

Carnegie Mellon University

This is joint work with Kayla Scharfstein, CMU.

Very much a work in progress, all comments welcome.

- 1. Introduction to Conformal Prediction
- 2. Anytime Conformal Prediction: The Problem
- 3. Anytime Conformal Prediction: A Solution
- 4. Conclusions

Introduction to Conformal Prediction

Conformal Prediction

- Conformal prediction, in recent times, has received a lot of attention as the go-to method for constructing valid prediction sets under "weak" assumptions.
- The problem conformal prediction solves can be stated as follows. Suppose Z₁,..., Z_n, Z_{n+1} are exchangeable random variables in some measurable space, of which we only observe Z₁,..., Z_n. For any α ∈ [0, 1], construct a set Ĉ_{n,α} such that P(Z_{n+1} ∈ Ĉ_{n,α}) ≥ 1 − α.
- There are several existing conformal methods that can achieve this goal without any more distributional assumptions. There are even extensions for dependent data and arbitrary individual sequences.
- The problem we want to study is

"can we stop at a sample size *n* at will? Can *n* be a random time?"

Different Conformal Methods

- One of the simplest conformal methods to solve this problem is called the *split conformal prediction*; Vovk, Lei and Wasserman, and so on.
- There are more complicated methods such as full conformal, jackknife+, CV+, bootstrap-after-jackknife+, and so on.
- All these methods are shown to work under the weaker assumption of exchangeable data.
- Here we consider the assumption of IID data and require the stronger anytime prediction guarantee.
- We first review the split conformal method and mention a few reasons why IID assumption provides a great insight into the prediction problem.

Split Conformal Method

- The idea of the split conformal method is to split the data into two parts and obtain a transform to reduce the problem to 1-d.
- Obtain a real-valued transformation $\widehat{R}(\cdot)$ based on the first part and let $\widehat{q}_{n_2,\alpha}$ denote the $\lceil (n_2+1)(1-\alpha) \rceil$ -th largest value of $\widehat{R}(Z_j)$ for Z_j 's in the second part.
- Just under exchangeability, it can be proved that

$$\mathbb{P}(\widehat{R}(Z_{n+1}) \leq \widehat{q}_{n_2,\alpha}) \geq 1 - \alpha \quad \text{for all} \quad n \geq 1.$$

• Equivalently, if $\widehat{\mathcal{C}}_{n,lpha}=\{z:\ \widehat{\mathcal{R}}(z)\leq \widehat{q}_{n_2,lpha}\}$, then

$$\mathbb{P}(Z_{n+1}\in\widehat{C}_{n,\alpha})\geq 1-\alpha.$$

In the IID setting, this guarantee can be written in terms of the common probability measure μ(·) of Z_i's: E[μ(Ĉ_{n,α})] ≥ 1 − α.

Exchangeability to IID

- There is more to gain from strengthening the exchangeability assumption to IID random variables.
- Conditional on the first split, $\widehat{R}(Z_j)$ for Z_j 's in the second split are IID observations and the goal of constructing a valid prediction now becomes finding a $\widehat{q}_{n_2,\alpha}$ such that

$$\mathbb{P}(\widehat{R}(Z_{n+1}) \leq \widehat{q}_{n_2,\alpha} | \widehat{R}) = \mathbb{E}[F_{\widehat{R}}(\widehat{q}_{n_2,\alpha}) | \widehat{R}] \geq 1 - \alpha,$$

where $F_{\widehat{R}}(\cdot)$ is the cumulative distribution function of $\widehat{R}(Z)$ conditional on \widehat{R} .

- This reformulation already shows a great advantage of the IID assumption. Note that the population 1α quantile already satisfies $F(q_{\alpha}) \geq 1 \alpha$.
- Note that if $\hat{q}_{n_2,\alpha}$ is some quantile of $\hat{R}(Z_j)$ for Z_j 's in the second split, then $F_{\hat{R}}(\hat{q}_{n_2,\alpha})$ is a uniform order statistics, the properties of which are understood well.

Exchangeability to IID

 In addition to asking for E[F_R(q̂_{n2,α})] ≥ 1 − α, one can also consider a PAC guarantee:

$$\mathbb{P}(F_{\widehat{R}}(\widehat{q}_{n_2,\alpha,\delta}) \geq 1-\alpha) \geq 1-\delta.$$

Conditional coverage is at least $1 - \alpha$ with probability at least $1 - \delta$.

- By strengthening the exchangeability assumption to IID, we can understand at a conformal prediction much more, still without distributional assumptions.
- For example, we can say how the conformal method behaves for the coverage guarantee uniform over all α ∈ [0, 1]. From DKW, we know

$$\mathbb{E}\left[\sup_{1\leq k\leq n} \left| U_{k:n} - \frac{k}{n} \right| \right] \leq \frac{C}{\sqrt{n}} \quad \text{for all} \quad n\geq 1.$$

- We can also consider tail bounds for sup_k |U_{k:n} − k/n| so that a uniform PAC guarantee can be obtained.
- Such deviation inequalities also help aggregate several split conformal prediction sets based on different transformations R
 (·) to obtain a smaller prediction sets (Yang and Kuchibhotla, 2021).

7

Anytime Conformal Prediction: The Problem

The Problem

- Recall that under the IID assumption, the classical goal of conformal prediction is to create a set C
 _{n,α} given n observations Z₁,..., Z_n such that E[μ(C
 _{n,α})] ≥ 1 − α.
- Here *n* is a fixed, given sample size.
- Consider the scenario where we observe (IID) data sequentially: we observe Z_1 , report a prediction set \hat{C}_2 , observe Z_2 , report prediction set Z_3 , and so on.
- The analyst decides to stop at time T for some reason. Can we guarantee that \hat{C}_T still contains 1α proportion of all future independent random variables?
- Formally, can we guarantee E[μ(Ĉ_T)] ≥ 1 − α? To see this, let Z₁^{*}, Z₂^{*},... denote an independent sequence of random variables from μ(·). Covering 1 − α proportion of Z₁^{*}, Z₂^{*},... is same as

$$\lim_{s\to\infty} \frac{1}{s} \sum_{i=1}^{s} \mathbf{1}\{Z_i^* \in \widehat{C}_T\} \ge 1-\alpha.$$

The Problem and Desiderata

• The problem of anytime conformal prediction is to construct a sequence of sets such that

$$\mathbb{E}[\mu(\widehat{C}_{\mathcal{T},\alpha})] \ge 1 - \alpha,$$

for any random time T with $\hat{C}_{T,\alpha}$ depending only on IID observations Z_1, \ldots, Z_{T-1} .

This goal can be shown to be equivalent to

$$\mathbb{E}\left[\min_{t\geq 1}\mu(\widehat{C}_{t,\alpha})\right]\geq 1-\alpha.$$
(1)

- Similar to (1), one can also consider anytime PAC guarantee:

$$\mathbb{P}\left(\min_{t\geq 1}\mu(\widehat{C}_{t,\alpha,\delta})\geq 1-\alpha\right)\geq 1-\delta.$$

The Problem and Desiderata

• Let us consider for now the anytime PAC guarantee:

$$\mathbb{P}\left(\min_{t\geq 1}\mu(\widehat{C}_{t,\alpha,\delta})\geq 1-\alpha\right)\geq 1-\delta.$$

- This goal is readily possible in two "trivial" ways:
 - Irrespective of data, return a set that is \mathcal{Z} with probability 1α and \emptyset with probability α . Then $\min_{t\geq 1} \mu(\widehat{C}_{t,\alpha,\delta}) = 1 \alpha$ almost surely.
 - Take C
 _{t,α,δ} = Z for t < n (for some n) and return the classical split conformal prediction set C
 _{n,α,δ} for t > n. Then

$$\min_{1 \le t \le n} \mu(\widehat{C}_{t,\alpha,\delta}) = 1 \quad \text{and} \quad \min_{t > n} \mu(\widehat{C}_{t,\alpha,\delta}) = \mu(\widehat{C}_{n,\alpha,\delta}).$$

- The problem with both these sets is that they do not converge to the "optimal" prediction set as t → ∞. Note that unlike confidence regions, prediction sets do not shrink to a singleton as t → ∞.
- We do expect that $\widehat{C}_{t,\alpha,\delta}$ becomes the optimal prediction set as t becomes ∞ .

For a good choice of transformation R
 (·), the classical split conformal set C
 _{n,α} can be shown to satisfy

$$\operatorname{Leb}(\widehat{C}_{n,\alpha}\Delta C_{\alpha}^{\operatorname{opt}}) \leq O_{p}(r_{n}),$$

for $\textit{r}_n \rightarrow 0$ as $n \rightarrow \infty$ at a "good" rate.

• A reasonable desiderata for the anytime conformal prediction problem is to construct $\widehat{C}_{t,\alpha,\delta}$ such that

$$\mathbb{P}\left(\min_{t\geq 1}\mu(\widehat{C}_{t,\alpha,\delta})\geq 1-\alpha\right)\geq 1-\delta.$$

and

$$\operatorname{Leb}(\widehat{C}_{t,\alpha,\delta}\Delta C_{\alpha}^{\operatorname{opt}}) \leq \widetilde{O}_{p}(r_{t}),$$

where $\widetilde{O}(\cdot)$ holds $\log(t)$ or $\log \log(t)$ factors.

Anytime Conformal Prediction: A Solution

Recall

• The anytime conformal prediction problem is to construct $\widehat{C}_{t,\alpha,\delta}$ such that

$$\mathbb{P}\left(\min_{t\geq 1}\mu(\widehat{C}_{t,\alpha,\delta})\geq 1-\alpha\right)\geq 1-\delta.$$

and

$$\operatorname{Leb}(\widehat{C}_{t,\alpha,\delta}\Delta C_{\alpha}^{\operatorname{opt}}) + \widetilde{O}_{p}(r_{t}),$$

where $\widetilde{O}(\cdot)$ holds $\log(t)$ or $\log \log(t)$ factors.

 Example: If Z = (X, Y) and Y = m₀(X) + ξ, ξ|X ~ N(0, σ²), then the optimal prediction set for Y is [m₀(X) ± σz_{α/2}], the width of which is σz_{α/2}.

The conformal prediction set $[\widehat{m}_{n_1}(X) \pm \widehat{q}_{n_2,\alpha}]$. Here $\widehat{m}_{n_1}(\cdot)$ is obtained from the hold-out training data and $\widehat{q}_{n_2,\alpha}$ is obtained from the calibration data. With n_1 fixed and $n_2 \to \infty$, the prediction set becomes $[\widehat{m}_{n_1}(X) \pm \sigma z_{\alpha/2}]$.

Only with $n_1 \to \infty$, we get to the optimal set: $[m_0(X) \pm \sigma z_{\alpha/2}]$.

Towards the Solution: Part 1

- Recall that we do not have access to a hold-out data set for anytime conformal prediction as we want coverage guarantee from sample size 1. As a first step, let us assume we do have such a hold-out.
- Use the hold-out data to obtain a real-valued transformation $\widehat{R}_{n_1}(\cdot)$.
- As we get samples $Z_{n_1+1}, Z_{n_1+2}, \ldots$, we want to report $\widehat{q}_{n_1+j,\alpha,\delta}$ such that

$$\mathbb{P}\left(\min_{j\geq 1}\mu(\widehat{R}_{n_1}^{-1}(\widehat{q}_{n_1+j}))\geq 1-\alpha\right)\geq 1-\delta.$$

- Note that $\mu(\widehat{R}_{n_1}^{-1}(\widehat{q}_{n_1+j})) = F_{\widehat{R}_{n_1}}(\widehat{q}_{n_1+j}).$
- Hence, it suffices to find \hat{q}_{n_1+j} such that

$$\mathbb{P}\left(\min_{j\geq 1}\widehat{q}_{n_1+j}\geq F_{\widehat{R}_{n_1}}^{-1}(1-\alpha)\right)\geq 1-\delta.$$

This means, we want an uniform in sample size upper bound on a particular quantile of $F_{\widehat{R}_{n_1}}(\cdot)$, which is possible via a distribution-free confidence band sequence for a CDF.

Towards the Solution: Part 1 (contd.)

• Confidence sequence for CDF: with observations $Z_{n_1+1}, \ldots, Z_{n_1+j}$, we have the empirical cdf

$$\widehat{F}_{\widehat{R}_{n_1},j}(x) = \frac{1}{j} \sum_{s=1}^{j} \mathbf{1}\{\widehat{R}_{n_1}(Z_{n_1+s}) \leq x\}.$$

• Howard and Ramdas (2021, Eq. (1)) implies that with probability at least $1 - \delta$,

$$\begin{aligned} F_{\widehat{R}_{n_1}}^{-1}(1-\alpha) &\leq \min_{j\geq 1} \widehat{F}_{\widehat{R}_{n_1},j}^{-1}\left(1-\alpha+u_{j,\alpha,\delta}\right), \end{aligned}$$
where $u_{j,\alpha,\delta} &= 1.5\sqrt{\alpha(1-\alpha)\ell_{\alpha}(j)} + 0.8\ell_{\alpha}(j)$ with
$$\ell_{\alpha}(j) &= \frac{1.4\log\log(2.1j) + \log(10/\delta)}{j}. \end{aligned}$$

Hence, the anytime conformal prediction set (with hold-out data) is

$$\widehat{\mathcal{C}}_{n_1+j,\alpha,\delta} = \{ z : \ \widehat{\mathcal{R}}_{n_1}(z) \leq \widehat{\mathcal{F}}_{\widehat{\mathcal{R}}_{n_1},j}^{-1} (1-\alpha+u_{j,\delta}) \}.$$

The problem is that this converges to $[\widehat{m}_{n_1}(X) \pm \sigma z_{\alpha/2}]$ as $j \to \infty$. We need \widehat{R}_{n_1} also to converge for optimality.

Final Solution

- In order to improve on the previous solution with hold-out data, we need to somehow sequentially update.
- Consider a sequence of transformations $\widehat{R}_0(\cdot), \widehat{R}_1(\cdot), \ldots$ with $\widehat{R}_t(\cdot)$ computed based on Z_1, \ldots, Z_{t-1} .

Eg: $\widehat{R}_t(\cdot)$ obtained from SGD. If Z = (X, Y), then one can consider $\widehat{R}_t(x) = \widehat{\beta}_t^\top x$ with $\widehat{\beta}_t$ obtained via

$$\widehat{\beta}_t = \widehat{\beta}_{t-1} - \xi_t X_{t-1} (Y_{t-1} - X_{t-1}^\top \widehat{\beta}_{t-1}),$$

for $t \geq 1$. Here ξ_t is some step size.

Ideally, we would like to find the quantile q_{t,α} of R
_t(Z) and use the set {z : R
t(z) ≤ q{t,α}}. But, we do not have any observations with the same distribution as R
_t(Z).

Idea: At time t, use $\widehat{R}_s(\cdot)$ for some s < t, say, $s = \eta^{\lfloor \log_\eta t \rfloor}$ $(\eta > 1)$.

Final Solution (Contd.)

• Formally, split the time into geometric epochs

$$\{t \ge 1\} = igcup_{k \ge 0} \left\{ s: \ \eta^k \le s < \eta^{k+1}
ight\}.$$

- For $s \in [\eta^k, \eta^{k+1}]$, apply the step 1 with $\widehat{R}_{\lceil \eta^k \rceil}(\cdot)$.
- This means that at time n, this method is using a fraction n/η of the observations as hold-out data and the resulting prediction sets converge to the optimal one as the sample size tends to infinity.
- All this optimality hinges on using the "right" transformation R
 (·), which has been discussed by several authors. See, e.g., Gupta et al. (2022, Pattern Recognition) and Sesia & Candes (2020, Stat).
- The benefit of this method is that it is valid for any sequence of transformations $\widehat{R}_s(\cdot), s \ge 1$ and is a purely online method in that there is no need to store past data.

Conclusions

Conclusions

- Strengthening the exchangeability assumption to IID yields a better understanding of conformal problem and methods. It also paves way for using concentration inequalities.
- We have introduced an online version of conformal prediction problem.
- Making use of confidence sequences, we provide a solution and proved that the resulting prediction sets are asymptotically optimal under regularity assumptions.
- The proposed solution is purely online and does not require storing past data.
- It remains to be seen how well the proposed solution performs in practice.

Conclusions

- Strengthening the exchangeability assumption to IID yields a better understanding of conformal problem and methods. It also paves way for using concentration inequalities.
- We have introduced an online version of conformal prediction problem.
- Making use of confidence sequences, we provide a solution and proved that the resulting prediction sets are asymptotically optimal under regularity assumptions.
- The proposed solution is purely online and does not require storing past data.
- It remains to be seen how well the proposed solution performs in practice.

Thank You!