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Introduction to Conformal
Prediction



Conformal Prediction

e Conformal prediction, in recent times, has received a lot of attention
as the go-to method for constructing valid prediction sets under
“weak” assumptions.

e The problem conformal prediction solves can be stated as follows.
Suppose 71, ..., 2Z,, Zy11 are exchangeable random variables in some
measurable space, of which we only observe Z3, ..., Z,. For any
a € [0,1], construct a set 6,17@ such that P(Z,41 € 6,,(,) >1—aq.

e There are several existing conformal methods that can achieve this
goal without any more distributional assumptions. There are even
extensions for dependent data and arbitrary individual sequences.

e The problem we want to study is

“can we stop at a sample size n at will?
Can n be a random time?”



Different Conformal Methods

e One of the simplest conformal methods to solve this problem is
called the split conformal prediction; Vovk, Lei and Wasserman, and
so on.

e There are more complicated methods such as full conformal,
jackknife4, CV+, bootstrap-after-jackknife+, and so on.

e All these methods are shown to work under the weaker assumption
of exchangeable data.

e Here we consider the assumption of I1ID data and require the
stronger anytime prediction guarantee.

e We first review the split conformal method and mention a few
reasons why 1D assumption provides a great insight into the
prediction problem.



Split Conformal Method

e The idea of the split conformal method is to split the data into two
parts and obtain a transform to reduce the problem to 1-d.

e Obtain a real-valued transformation R(-) based on the first part and
let gn, o denote the [(n, 4+ 1)(1 — «v)]-th largest value of R(Z;) for
Zj's in the second part.

e Just under exchangeability, it can be proved that
P(R(Zpy1) < Gmo)>1—a forall n>1.
e Equivalently, if (.A“,,’a ={z: R(z) < Q.0 ) then
P(Zns1 € Cpa) > 1—a.

e In the IID setting, this guarantee can be written in terms of the
common probability measure yu(-) of Zi's: E[u(Cpo)] > 1 — a.



Exchangeability to 11D

e There is more to gain from strengthening the exchangeability
assumption to |ID random variables.

e Conditional on the first split, R(Z;) for Z;'s in the second split are
1D observations and the goal of constructing a valid prediction now
becomes finding a g, o such that

P(R(Zy+1) < Gng,alR) = E[Fa(Gm,a)|R] > 1 - a,

where Fz(-) is the cumulative distribution function of /3(2)
conditional on R.

e This reformulation already shows a great advantage of the 11D
assumption. Note that the population 1 — a quantile already
satisfies F(g,) > 1 — a.

e Note that if Gp,.o is some quantile of R(Z;) for Z;'s in the second
split, then F5(Gn,,o) is a uniform order statistics, the properties of
which are understood well.



Exchangeability to 11D

In addition to asking for E[F5(qn,,o)] > 1 — @, one can also consider
a PAC guarantee:

P(Fa(Gm,as) > 1—a)>1-4.

Conditional coverage is at least 1 — o with probability at least 1 — §.
By strengthening the exchangeability assumption to IID, we can
understand at a conformal prediction much more, still without
distributional assumptions.

For example, we can say how the conformal method behaves for the
coverage guarantee uniform over all « € [0, 1]. From DKW, we know

k C
E{sup Uk:n—n}gﬁ forall n>1.

1<k<n

We can also consider tail bounds for sup, |Uk., — k/n| so that a
uniform PAC guarantee can be obtained.

Such deviation inequalities also help aggregate several split
conformal prediction sets based on different transformations /?() to
obtain a smaller prediction sets (Yang and Kuchibhotla, 2021).



Anytime Conformal Prediction:
The Problem




The Problem

e Recall that under the IID assumption, the classical goal of conformal
prediction is to create a set (?,,,a given n observations Z3,...,Z,
such that E[u( 6n,a)] >1-a.

e Here n is a fixed, given sample size.

e Consider the scenario where we observe (IID) data sequentially: we
observe Zj, report a prediction set 62, observe Z,, report prediction
set /3, and so on.

e The analyst decides to stop at time T for some reason. Can we
guarantee that 67 still contains 1 — « proportion of all future
independent random variables?

e Formally, can we guarantee E[u(fr)] >1—a? To see this, let

Zy,Z5, ... denote an independent sequence of random variables
from p(-). Covering 1 — « proportion of Z;, Z5, ... is same as
1 ~
im - * >1-a.
Jim = Y HZrelrizl-a

i=1



The Problem and Desiderata

e The problem of anytime conformal prediction is to construct a
sequence of sets such that

E[N(é\T,a)] 2 l=a

for any random time T with 67,(1 depending only on IID
observations Zy,...,Z71_1.

e This goal can be shown to be equivalent to

E {miw(a,a)] >1—o. (1)

t>

e This equivalence implies that one may not have access to

independent hold-out data for obtaining a transformation I%()

e Similar to (1), one can also consider anytime PAC guarantee:

in u(C, >1—a)>1—
P <rtn>|? W(Cras) >1 a> >1-6.



The Problem and Desiderata

e Let us consider for now the anytime PAC guarantee:

P <r:1>|r11 W(Cras)>1— a> >1-0.

e This goal is readily possible in two “trivial” ways:
e |rrespective of data, return a set that is Z with probability 1 — « and
() with probability a. Then ming>1 M(a,a,g) =1 — « almost surely.
o Take 6t,a,5 = Z for t < n (for some n) and return the classical split
conformal prediction set aw,g for t > n. Then

1gltign/~4(ct,a,5) =1 and Tli? #(Ctra,5) = 1(Caya,s)-

e The problem with both these sets is that they do not converge to
the “optimal” prediction set as t — oo. Note that unlike confidence
regions, prediction sets do not shrink to a singleton as t — oo.

e We do expect that a,rx,é becomes the optimal prediction set as t
becomes oco.
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The Problem and Desiderata

e For a good choice of transformation I?() the classical split
conformal set C, , can be shown to satisfy

Leb(Cpa ACOPY) < O,(r),

for r, =+ 0 as n — oo at a “good” rate.

e A reasonable desiderata for the anytime conformal prediction
problem is to construct C; o ¢ such that

in (G, >l—a)>1-4.
P(gyu(Cm,(s)_l a)_l 0

and
Leb(Ctya,gACO?pt) § Op(rt)7

where O(-) holds log(t) or loglog(t) factors.
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Anytime Conformal Prediction:
A Solution




Recall

e The anytime conformal prediction problem is to construct 6,_»70475
such that

in u(C, >l—a)>1—
P <rtn>|? 1(Cras) >1 a> >1-—0.

and
Leb(Cr.0 s ACOPY) + O, (re),

where O(+) holds log(t) or log log(t) factors.

e Example: If Z=(X,Y) and Y = mg(X) + &, £€|X ~ N(0,52), then
the optimal prediction set for Y is [mo(X) & 0z,/2], the width of
which is 0z, 5.

The conformal prediction set [, (X) £ Gny.o]. Here mp (+) is
obtained from the hold-out training data and g, . is obtained from
the calibration data. With n; fixed and n, — oo, the prediction set
becomes My, (X) + 0z4/5].

Only with n; — oo, we get to the optimal set: [mo(X) £ 0z, /2]
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Towards the Solution: Part 1

e Recall that we do not have access to a hold-out data set for anytime
conformal prediction as we want coverage guarantee from sample
size 1. As a first step, let us assume we do have such a hold-out.

e Use the hold-out data to obtain a real-valued transformation ﬁnl(-).

o As we get samples Z, 11, Zp, 42, ..., We want to report Gp,+j o,s Such
that

P (min iRy (@) 21— ) 216
Jj=1

o Note that pu(R,*(Gn+j) = Fg, (Gm+j).
e Hence, it suffices to find gy, such that

na 0 -1 — —
P <Ery? Qry+j > Fﬁnl(l a)) >1-0.

This means, we want an uniform in sample size upper bound on a

particular quantile of F5 (-), which is possible via a distribution-free
ny

confidence band sequence for a CDF.
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Towards the Solution: Part 1 (contd.)

e Confidence sequence for CDF: with observations Z, 11,..., Zs+j,
we have the empirical cdf

~

Fz,, /(¥) Z 1Ry, (Znyss) < x}.

s=1
e Howard and Ramdas (2021, Eq. (1)) implies that with probability at

least 1 — 9,
=il =
Fﬁnl(l—a)<m2 ’31 (1—a+ujas),
where uj o 5 = 1.5\/a(1l — a)ly(j) + 0.8/, (j) with
. 1.41oglog(2.1)) + log(10/0
0.() = ( j) (10/0)

e Hence, the anytime conformal prediction set (with hold-out data) is
Coitjos = {2 Ru(2) S B2 (1—at+ui)}

The problem is that this converges to [m,, (X) £ 0z, /] as

j = co. We need R, also to converge for optimality. 14



Final Solution

e In order to improve on the previous solution with hold-out data, we
need to somehow sequentially update.

e Consider a sequence of transformations Ro(:), Ry(-), ... with R (")
computed based on Z3,...,Z; 1.

Eg: I?t( -) obtained from SGD. If Z = (X, Y), then one can consider
R:(x) = B¢ x with j; obtained via

Bt = Bt—l — & Xe—1(Yem1 — Xt—ilﬁt—l)y

for t > 1. Here &; is some step size.

e Ideally, we would like to find the quantile g . of ﬁt(Z) and use the
set {z: Re(z) < gt,o}. But, we do not have any observations with
the same distribution as R:(Z).

Idea: At time t, use R,(-) for some s < t, say, s = nl&t] (5 > 1).
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Final Solution (Contd.)

e Formally, split the time into geometric epochs

{tzl}:U{s:nk§s<77k+1}.
k>0

o For s € [*,7*"1], apply the step 1 with Ry, (").
e This means that at time n, this method is using a fraction n/7n of

the observations as hold-out data and the resulting prediction sets
converge to the optimal one as the sample size tends to infinity.

e All this optimality hinges on using the "right” transformation ﬁ()
which has been discussed by several authors. See, e.g., Gupta et al.
(2022, Pattern Recognition) and Sesia & Candes (2020, Stat).

e The benefit of this method is that it is valid for any sequence of
transformations Rs(-),s > 1 and is a purely online method in that
there is no need to store past data.
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Conclusions

Strengthening the exchangeability assumption to 1D yields a better
understanding of conformal problem and methods. It also paves way
for using concentration inequalities.

We have introduced an online version of conformal prediction
problem.

Making use of confidence sequences, we provide a solution and
proved that the resulting prediction sets are asymptotically optimal
under regularity assumptions.

The proposed solution is purely online and does not require storing
past data.

It remains to be seen how well the proposed solution performs in
practice.
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Conclusions

Strengthening the exchangeability assumption to 1D yields a better
understanding of conformal problem and methods. It also paves way
for using concentration inequalities.

We have introduced an online version of conformal prediction
problem.

Making use of confidence sequences, we provide a solution and
proved that the resulting prediction sets are asymptotically optimal
under regularity assumptions.

The proposed solution is purely online and does not require storing
past data.

It remains to be seen how well the proposed solution performs in
practice.

Thank You!
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