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Introduction to Conformal

Prediction



Conformal Prediction

• Conformal prediction, in recent times, has received a lot of attention

as the go-to method for constructing valid prediction sets under

“weak” assumptions.

• The problem conformal prediction solves can be stated as follows.

Suppose Z1, . . . ,Zn,Zn+1 are exchangeable random variables in some

measurable space, of which we only observe Z1, . . . ,Zn. For any

α ∈ [0, 1], construct a set Ĉn,α such that P(Zn+1 ∈ Ĉn,α) ≥ 1− α.

• There are several existing conformal methods that can achieve this

goal without any more distributional assumptions. There are even

extensions for dependent data and arbitrary individual sequences.

• The problem we want to study is

“can we stop at a sample size n at will?

Can n be a random time?”
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Different Conformal Methods

• One of the simplest conformal methods to solve this problem is

called the split conformal prediction; Vovk, Lei and Wasserman, and

so on.

• There are more complicated methods such as full conformal,

jackknife+, CV+, bootstrap-after-jackknife+, and so on.

• All these methods are shown to work under the weaker assumption

of exchangeable data.

• Here we consider the assumption of IID data and require the

stronger anytime prediction guarantee.

• We first review the split conformal method and mention a few

reasons why IID assumption provides a great insight into the

prediction problem.
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Split Conformal Method

• The idea of the split conformal method is to split the data into two

parts and obtain a transform to reduce the problem to 1-d.

• Obtain a real-valued transformation R̂(·) based on the first part and

let q̂n2,α denote the ⌈(n2 + 1)(1− α)⌉-th largest value of R̂(Zj) for

Zj ’s in the second part.

• Just under exchangeability, it can be proved that

P(R̂(Zn+1) ≤ q̂n2,α) ≥ 1− α for all n ≥ 1.

• Equivalently, if Ĉn,α = {z : R̂(z) ≤ q̂n2,α}, then

P(Zn+1 ∈ Ĉn,α) ≥ 1− α.

• In the IID setting, this guarantee can be written in terms of the

common probability measure µ(·) of Zi ’s: E[µ(Ĉn,α)] ≥ 1− α.
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Exchangeability to IID

• There is more to gain from strengthening the exchangeability

assumption to IID random variables.

• Conditional on the first split, R̂(Zj) for Zj ’s in the second split are

IID observations and the goal of constructing a valid prediction now

becomes finding a q̂n2,α such that

P(R̂(Zn+1) ≤ q̂n2,α|R̂) = E[FR̂(q̂n2,α)|R̂] ≥ 1− α,

where FR̂(·) is the cumulative distribution function of R̂(Z )

conditional on R̂.

• This reformulation already shows a great advantage of the IID

assumption. Note that the population 1− α quantile already

satisfies F (qα) ≥ 1− α.

• Note that if q̂n2,α is some quantile of R̂(Zj) for Zj ’s in the second

split, then FR̂(q̂n2,α) is a uniform order statistics, the properties of

which are understood well.
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Exchangeability to IID

• In addition to asking for E[FR̂(q̂n2,α)] ≥ 1− α, one can also consider

a PAC guarantee:

P(FR̂(q̂n2,α,δ) ≥ 1− α) ≥ 1− δ.

Conditional coverage is at least 1− α with probability at least 1− δ.

• By strengthening the exchangeability assumption to IID, we can

understand at a conformal prediction much more, still without

distributional assumptions.

• For example, we can say how the conformal method behaves for the

coverage guarantee uniform over all α ∈ [0, 1]. From DKW, we know

E
[

sup
1≤k≤n

∣∣∣∣Uk:n −
k

n

∣∣∣∣] ≤ C√
n

for all n ≥ 1.

• We can also consider tail bounds for supk |Uk:n − k/n| so that a

uniform PAC guarantee can be obtained.

• Such deviation inequalities also help aggregate several split

conformal prediction sets based on different transformations R̂(·) to
obtain a smaller prediction sets (Yang and Kuchibhotla, 2021). 7
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The Problem



The Problem

• Recall that under the IID assumption, the classical goal of conformal

prediction is to create a set Ĉn,α given n observations Z1, . . . ,Zn

such that E[µ(Ĉn,α)] ≥ 1− α.

• Here n is a fixed, given sample size.

• Consider the scenario where we observe (IID) data sequentially: we

observe Z1, report a prediction set Ĉ2, observe Z2, report prediction

set Z3, and so on.

• The analyst decides to stop at time T for some reason. Can we

guarantee that ĈT still contains 1− α proportion of all future

independent random variables?

• Formally, can we guarantee E[µ(ĈT )] ≥ 1− α? To see this, let

Z∗
1 ,Z

∗
2 , . . . denote an independent sequence of random variables

from µ(·). Covering 1− α proportion of Z∗
1 ,Z

∗
2 , . . . is same as

lim
s→∞

1

s

s∑
i=1

1{Z∗
i ∈ ĈT} ≥ 1− α.
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The Problem and Desiderata

• The problem of anytime conformal prediction is to construct a

sequence of sets such that

E[µ(ĈT ,α)] ≥ 1− α,

for any random time T with ĈT ,α depending only on IID

observations Z1, . . . ,ZT−1.

• This goal can be shown to be equivalent to

E
[
min
t≥1

µ(Ĉt,α)

]
≥ 1− α. (1)

• This equivalence implies that one may not have access to

independent hold-out data for obtaining a transformation R̂(·).
• Similar to (1), one can also consider anytime PAC guarantee:

P
(
min
t≥1

µ(Ĉt,α,δ) ≥ 1− α

)
≥ 1− δ.
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The Problem and Desiderata

• Let us consider for now the anytime PAC guarantee:

P
(
min
t≥1

µ(Ĉt,α,δ) ≥ 1− α

)
≥ 1− δ.

• This goal is readily possible in two “trivial” ways:

• Irrespective of data, return a set that is Z with probability 1− α and

∅ with probability α. Then mint≥1 µ(Ĉt,α,δ) = 1− α almost surely.

• Take Ĉt,α,δ = Z for t < n (for some n) and return the classical split

conformal prediction set Ĉn,α,δ for t > n. Then

min
1≤t≤n

µ(Ĉt,α,δ) = 1 and min
t>n

µ(Ĉt,α,δ) = µ(Ĉn,α,δ).

• The problem with both these sets is that they do not converge to

the “optimal” prediction set as t → ∞. Note that unlike confidence

regions, prediction sets do not shrink to a singleton as t → ∞.

• We do expect that Ĉt,α,δ becomes the optimal prediction set as t

becomes ∞.
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The Problem and Desiderata

• For a good choice of transformation R̂(·), the classical split

conformal set Ĉn,α can be shown to satisfy

Leb(Ĉn,α∆Copt
α ) ≤ Op(rn),

for rn → 0 as n → ∞ at a “good” rate.

• A reasonable desiderata for the anytime conformal prediction

problem is to construct Ĉt,α,δ such that

P
(
min
t≥1

µ(Ĉt,α,δ) ≥ 1− α

)
≥ 1− δ.

and

Leb(Ĉt,α,δ∆Copt
α ) ≤ Õp(rt),

where Õ(·) holds log(t) or log log(t) factors.
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Anytime Conformal Prediction:

A Solution



Recall

• The anytime conformal prediction problem is to construct Ĉt,α,δ

such that

P
(
min
t≥1

µ(Ĉt,α,δ) ≥ 1− α

)
≥ 1− δ.

and

Leb(Ĉt,α,δ∆Copt
α ) + Õp(rt),

where Õ(·) holds log(t) or log log(t) factors.

• Example: If Z = (X ,Y ) and Y = m0(X ) + ξ, ξ|X ∼ N(0, σ2), then

the optimal prediction set for Y is [m0(X )± σzα/2], the width of

which is σzα/2.

The conformal prediction set [m̂n1(X )± q̂n2,α]. Here m̂n1(·) is
obtained from the hold-out training data and q̂n2,α is obtained from

the calibration data. With n1 fixed and n2 → ∞, the prediction set

becomes [m̂n1(X )± σzα/2].

Only with n1 → ∞, we get to the optimal set: [m0(X )± σzα/2].

12



Towards the Solution: Part 1

• Recall that we do not have access to a hold-out data set for anytime

conformal prediction as we want coverage guarantee from sample

size 1. As a first step, let us assume we do have such a hold-out.

• Use the hold-out data to obtain a real-valued transformation R̂n1(·).
• As we get samples Zn1+1,Zn1+2, . . ., we want to report q̂n1+j,α,δ such

that

P
(
min
j≥1

µ(R̂−1
n1 (q̂n1+j)) ≥ 1− α

)
≥ 1− δ.

• Note that µ(R̂−1
n1 (q̂n1+j)) = FR̂n1

(q̂n1+j).

• Hence, it suffices to find q̂n1+j such that

P
(
min
j≥1

q̂n1+j ≥ F−1

R̂n1

(1− α)

)
≥ 1− δ.

This means, we want an uniform in sample size upper bound on a

particular quantile of FR̂n1
(·), which is possible via a distribution-free

confidence band sequence for a CDF.
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Towards the Solution: Part 1 (contd.)

• Confidence sequence for CDF: with observations Zn1+1, . . . ,Zn1+j ,

we have the empirical cdf

F̂R̂n1
,j(x) =

1

j

j∑
s=1

1{R̂n1(Zn1+s) ≤ x}.

• Howard and Ramdas (2021, Eq. (1)) implies that with probability at

least 1− δ,

F−1

R̂n1

(1− α) ≤ min
j≥1

F̂−1

R̂n1
,j
(1− α+ uj,α,δ) ,

where uj,α,δ = 1.5
√

α(1− α)ℓα(j) + 0.8ℓα(j) with

ℓα(j) =
1.4 log log(2.1j) + log(10/δ)

j
.

• Hence, the anytime conformal prediction set (with hold-out data) is

Ĉn1+j,α,δ = {z : R̂n1(z) ≤ F̂−1

R̂n1
,j
(1− α+ uj,δ)}.

The problem is that this converges to [m̂n1(X )± σzα/2] as

j → ∞. We need R̂n1 also to converge for optimality. 14



Final Solution

• In order to improve on the previous solution with hold-out data, we

need to somehow sequentially update.

• Consider a sequence of transformations R̂0(·), R̂1(·), . . . with R̂t(·)
computed based on Z1, . . . ,Zt−1.

Eg: R̂t(·) obtained from SGD. If Z = (X ,Y ), then one can consider

R̂t(x) = β̂⊤
t x with β̂t obtained via

β̂t = β̂t−1 − ξtXt−1(Yt−1 − X⊤
t−1β̂t−1),

for t ≥ 1. Here ξt is some step size.

• Ideally, we would like to find the quantile qt,α of R̂t(Z ) and use the

set {z : R̂t(z) ≤ qt,α}. But, we do not have any observations with

the same distribution as R̂t(Z ).

Idea: At time t, use R̂s(·) for some s < t, say, s = η⌊logη t⌋ (η > 1).
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Final Solution (Contd.)

• Formally, split the time into geometric epochs

{t ≥ 1} =
⋃
k≥0

{
s : ηk ≤ s < ηk+1

}
.

• For s ∈ [ηk , ηk+1], apply the step 1 with R̂⌈ηk⌉(·).
• This means that at time n, this method is using a fraction n/η of

the observations as hold-out data and the resulting prediction sets

converge to the optimal one as the sample size tends to infinity.

• All this optimality hinges on using the “right” transformation R̂(·),
which has been discussed by several authors. See, e.g., Gupta et al.

(2022, Pattern Recognition) and Sesia & Candes (2020, Stat).

• The benefit of this method is that it is valid for any sequence of

transformations R̂s(·), s ≥ 1 and is a purely online method in that

there is no need to store past data.
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Conclusions

• Strengthening the exchangeability assumption to IID yields a better

understanding of conformal problem and methods. It also paves way

for using concentration inequalities.

• We have introduced an online version of conformal prediction

problem.

• Making use of confidence sequences, we provide a solution and

proved that the resulting prediction sets are asymptotically optimal

under regularity assumptions.

• The proposed solution is purely online and does not require storing

past data.

• It remains to be seen how well the proposed solution performs in

practice.

Thank You!
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